forked from soc-ucsd/DMPC_for_platoons
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Platoon_PF.m
360 lines (294 loc) · 17.2 KB
/
Platoon_PF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
%% Code for the paper
% Title: Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies
% Authors: Zheng, Yang, Shengbo Eben Li, Keqiang Li, Francesco Borrelli, and J. Karl Hedrick.
% Journal: IEEE Transactions on Control Systems Technology 25, no. 3 (2017): 899-910.
%% DMPC for platoons with PF topology
clc;clear;close all;
load PlatoonParameter.mat % This set of parameters was used in the paper
%% Initial Virables
Postion = zeros(Num_step,Num_veh); % postion of each vehicle;
Velocity = zeros(Num_step,Num_veh); % velocity of each vehicle;
Torque = zeros(Num_step,Num_veh); % Braking or Tracking Torque of each vehicle;
U = zeros(Num_step,Num_veh); % Desired Braking or Tracking Torque of each vehicle;
Cost = zeros(Num_step,Num_veh); % Cost function
Exitflg = zeros(Num_step,Num_veh); % Stop flag - solvers
% Leading vehicle
d = 20; % Desired spacing
a0 = zeros(Num_step,1);
v0 = zeros(Num_step,1);
x0 = zeros(Num_step,1);
% Transient process of leader, which is given in advance
v0(1) = 20; a0(1/Tim_step+1:2/Tim_step) = 2;
for i = 2:Num_step
v0(i) = v0(i-1)+a0(i)*Tim_step;
x0(i) = x0(i-1)+v0(i)*Tim_step;
end
% Zero initial error for the followers
for i = 1:Num_veh
Postion(1,i) = x0(1)-i*d;
Velocity(1,i) = 20;
Torque(1,i) = (Mass(i)*g*f + Ca(i)*Velocity(1,i)^2)*R(i)/Eta;
end
%% MPC weighted matrix in the cost function
% PF topology --> Fi > Gi+1
% Q1 : leader weighted matrix for state;
% R1 --> leader weighted matrix for control input
% Fi --> penalty for deviation of its own assumed trajectory
% Gi --> penalty for deviation of its neighbors' assumed trajectory
F1 = 10*eye(2); G1 = 0; Q1 = 10*eye(2);R1 = 1;
F2 = 10*eye(2); G2 = 5*eye(2);Q2 = 0*eye(2); R2 = 1;
F3 = 10*eye(2); G3 = 5*eye(2);Q3 = 0*eye(2); R3 = 1;
F4 = 10*eye(2); G4 = 5*eye(2);Q4 = 0*eye(2); R4 = 1;
F5 = 10*eye(2); G5 = 5*eye(2);Q5 = 0*eye(2); R5 = 1;
F6 = 10*eye(2); G6 = 5*eye(2);Q6 = 0*eye(2); R6 = 1;
F7 = 10*eye(2); G7 = 5*eye(2);Q7 = 0*eye(2); R7 = 1;
% Distributed MPC assumed state
Np = 20; % Predictive horizon
Pa = zeros(Np,Num_veh); % Assumed postion of each vehicle;
Va = zeros(Np,Num_veh); % Assumed velocity of each vehicle;
ua = zeros(Np,Num_veh); % Assumed Braking or Tracking Torque input of each vehicle;
Pa_next = zeros(Np+1,Num_veh); % 1(0): Assumed postion of each vehicle at the newt time step;
Va_next = zeros(Np+1,Num_veh); % Assumed velocity of each vehicle at the newt time step;
ua_next = zeros(Np+1,Num_veh); % Assumed Braking or Tracking Torque of each vehicle at the newt time step;
% Initialzie the assumed state for the first computation: constant speed
for i = 1:Num_veh
ua(:,i) = Torque(1,i);
Pa(1,i) = Postion(1,i); % The first point should be interpreted as k = 0 (current state)
Va(1,i) = Velocity(1,i);
Ta(1,i) = Torque(1,i);
for j = 1:Np
[Pa(j+1,i),Va(j+1,i),Ta(j+1,i)] = VehicleDynamic(ua(j,i),Tim_step,Pa(j,i),Va(j,i),Ta(j,i),Mass(i),R(i),g,f,Eta,Ca(i),Tao(i));
end
end
tol_opt = 1e-5;
options = optimset('Display','off','TolFun', tol_opt, 'MaxIter', 2000,...
'LargeScale', 'off', 'RelLineSrchBnd', [], 'RelLineSrchBndDuration', 1);
%% For debugging
% Terminal state
Xend = zeros(Num_step,Num_veh); Vend = zeros(Num_step,Num_veh);
%% Iterative Simulation
for i = 2:Num_step - Np
fprintf('\n Steps i= %d\n',i)
% Solve optimization problem
tic
%% Vehicle one
Vehicle_Type = [Mass(1),R(1),g,f,Eta,Ca(1),Tao(1)]; % the vehicle parameters : Mass,R,g,f,Eta,Ca(i),Tao,
X0 = [Postion(i-1,1),Velocity(i-1,1),Torque(i-1,1)]; % the vehicle variable in the last time step
Pd = x0(i-1:i+Np-1) - d; Vd = v0(i-1:i+Np-1); % Np+1 points in total: i-1 last state, i to be optimized
Xdes = [Pd,Vd]; % Desired state of the first vehicle
Xa = [Pa(:,1),Va(:,1)]; % Assumed state, which is passed to the next vehicle
Xnba = zeros(Np+1,2); % 1:last state
u0 = ua(:,1); % initial searching point
A = [];b = []; Aeq = []; beq = []; % no linear constraints
lb = Torquebound(1,1)*ones(Np,1); ub = Torquebound(1,2)*ones(Np,1); % upper and lower bound for input
Pnp = Pd(end,1); Vnp = Vd(end,1); % Terminal constraints
Xend(i,1) = Pnp; Vend(i,1) = Vnp; Tnp = (Ca(1)*Vnp.^2 + Mass(1)*g*f)/Eta*R(1);
% MPC - subproblem in vehicle 1
[u, Cost(i,1), Exitflg(i,1), output] = fmincon(@(u) Costfunction2( Np, Tim_step, X0 ,u, Vehicle_Type,Q1,Xdes,R1,F1,Xa,G1,Xnba), ...
u0, A, b, Aeq, beq, lb, ub, @(u) Nonlinearconstraints(Np, Tim_step, X0, u, Vehicle_Type,Pnp,Vnp,Tnp),options);
% state involves one step
U(i,1) = u(1);
[Postion(i,1),Velocity(i,1),Torque(i,1)] = VehicleDynamic(U(i,1),Tim_step,Postion(i-1,1),Velocity(i-1,1),Torque(i-1,1),Mass(1),R(1),g,f,Eta,Ca(1),Tao(1));
% Update assumed state
Temp = zeros(Np+1,3);
Temp(1,:) = [Postion(i,1),Velocity(i,1),Torque(i,1)];
ua(1:Np-1,1) = u(2:Np);
for j = 1:Np-1
[Temp(j+1,1),Temp(j+1,2),Temp(j+1,3)] = VehicleDynamic(ua(j,1),Tim_step,Temp(j,1),Temp(j,2),Temp(j,3),Mass(1),R(1),g,f,Eta,Ca(1),Tao(1));
end
ua(Np,1) = (Ca(1)*Temp(Np,2).^2 + Mass(1)*g*f)/Eta*R(1);
[Temp(Np+1,1),Temp(Np+1,2),Temp(Np+1,3)] = VehicleDynamic(ua(Np,1),Tim_step,Temp(Np,1),Temp(Np,2),Temp(Np,3),Mass(1),R(1),g,f,Eta,Ca(1),Tao(1));
Pa_next(:,1) = Temp(:,1);
Va_next(:,1) = Temp(:,2);
toc
%% Vehicle two
tic
Vehicle_Type = [Mass(2),R(2),g,f,Eta,Ca(2),Tao(2)]; % the vehicle parameters : Mass,R,g,f,Eta,Ca(i),Tao,
X0 = [Postion(i-1,2),Velocity(i-1,2),Torque(i-1,2)]; % the vehicle variable in the last time
Pd = zeros(Np+1,1); Vd = zeros(Np+1,1);
Xdes = [Pd,Vd];
Xa = [Pa(:,2),Va(:,2)];
Xnfa = [Pa(:,1) - d, Va(:,1)];
u0 = ua(:,2);
A = [];b = []; Aeq = []; beq = [];
lb = Torquebound(2,1)*ones(Np,1); ub = Torquebound(2,2)*ones(Np,1);
Pnp = Xnfa(end,1); Vnp = Xnfa(end,2);
Xend(i,2) = Pnp; Vend(i,2) = Vnp; Tnp = (Ca(2)*Vnp.^2 + Mass(2)*g*f)/Eta*R(2);
% MPC - subporblem for vehicle 2
[u, Cost(i,2), Exitflg(i,2), output] = fmincon(@(u) Costfunction2( Np, Tim_step, X0 ,u, Vehicle_Type,Q2,Xdes,R2,F2,Xa,G2,Xnfa), ...
u0, A, b, Aeq, beq, lb, ub, @(u) Nonlinearconstraints(Np, Tim_step, X0, u, Vehicle_Type,Pnp,Vnp,Tnp),options);
% state involves one step
U(i,2) = u(1);
[Postion(i,2),Velocity(i,2),Torque(i,2)] = VehicleDynamic(U(i,2),Tim_step,Postion(i-1,2),Velocity(i-1,2),Torque(i-1,2),Mass(2),R(2),g,f,Eta,Ca(2),Tao(2));
% Update assumed state
Temp = zeros(Np+1,3);
Temp(1,:) = [Postion(i,2),Velocity(i,2),Torque(i,2)];
ua(1:Np-1,2) = u(2:Np);
for j = 1:Np-1
[Temp(j+1,1),Temp(j+1,2),Temp(j+1,3)] = VehicleDynamic(ua(j,2),Tim_step,Temp(j,1),Temp(j,2),Temp(j,3),Mass(2),R(2),g,f,Eta,Ca(2),Tao(2));
end
ua(Np,2) = (Ca(2)*Temp(Np,2).^2 + Mass(2)*g*f)/Eta*R(2);
[Temp(Np+1,1),Temp(Np+1,2),Temp(Np+1,3)] = VehicleDynamic(ua(Np,2),Tim_step,Temp(Np,1),Temp(Np,2),Temp(Np,3),Mass(2),R(2),g,f,Eta,Ca(2),Tao(2));
Pa_next(:,2) = Temp(:,1);
Va_next(:,2) = Temp(:,2);
toc
%% vehicle three
tic
Vehicle_Type = [Mass(3),R(3),g,f,Eta,Ca(3),Tao(3)]; % the vehicle parameters : Mass,R,g,f,Eta,Ca(i),Tao,
X0 = [Postion(i-1,3),Velocity(i-1,3),Torque(i-1,3)]; % the vehicle variable in the last time
Pd = zeros(Np+1,1); Vd = zeros(Np+1,1);
Xdes = [Pd,Vd];
Xa = [Pa(:,3),Va(:,3)];
Xnfa = [Pa(:,2) - d, Va(:,2)];
u0 = ua(:,3);
A = [];b = []; Aeq = []; beq = [];
lb = Torquebound(3,1)*ones(Np,1); ub = Torquebound(3,2)*ones(Np,1);
Pnp = Xnfa(end,1); Vnp = Xnfa(end,2);
Xend(i,3) = Pnp; Vend(i,3) = Vnp; Tnp = (Ca(3)*Vnp.^2 + Mass(3)*g*f)/Eta*R(3);
% MPC-subproblem
[u, Cost(i,3), Exitflg(i,3), output] = fmincon(@(u) Costfunction2( Np, Tim_step, X0 ,u, Vehicle_Type,Q3,Xdes,R3,F3,Xa,G3,Xnfa), ...
u0, A, b, Aeq, beq, lb, ub, @(u) Nonlinearconstraints(Np, Tim_step, X0, u, Vehicle_Type,Pnp,Vnp,Tnp),options);
% state involves one step
U(i,3) = u(1);
[Postion(i,3),Velocity(i,3),Torque(i,3)] = VehicleDynamic(U(i,3),Tim_step,Postion(i-1,3),Velocity(i-1,3),Torque(i-1,3),Mass(3),R(3),g,f,Eta,Ca(3),Tao(3));
% update assumed state
Temp = zeros(Np+1,3);
Temp(1,:) = [Postion(i,3),Velocity(i,3),Torque(i,3)];
ua(1:Np-1,3) = u(2:Np);
for j = 1:Np-1
[Temp(j+1,1),Temp(j+1,2),Temp(j+1,3)] = VehicleDynamic(ua(j,3),Tim_step,Temp(j,1),Temp(j,2),Temp(j,3),Mass(3),R(3),g,f,Eta,Ca(3),Tao(3));
end
ua(Np,3) = (Ca(3)*Temp(Np,2).^2 + Mass(3)*g*f)/Eta*R(3);
[Temp(Np+1,1),Temp(Np+1,2),Temp(Np+1,3)] = VehicleDynamic(ua(Np,3),Tim_step,Temp(Np,1),Temp(Np,2),Temp(Np,3),Mass(3),R(3),g,f,Eta,Ca(3),Tao(3));
Pa_next(:,3) = Temp(:,1);
Va_next(:,3) = Temp(:,2);
toc
%% vehicle four
tic
Vehicle_Type = [Mass(4),R(4),g,f,Eta,Ca(4),Tao(4)]; % the vehicle parameters : Mass,R,g,f,Eta,Ca(i),Tao,
X0 = [Postion(i-1,4),Velocity(i-1,4),Torque(i-1,4)];
Pd = zeros(Np+1,1); Vd = zeros(Np+1,1);
Xdes = [Pd,Vd];
Xa = [Pa(:,4),Va(:,4)];
Xnfa = [Pa(:,3) - d, Va(:,3)];
u0 = ua(:,4);
A = [];b = []; Aeq = []; beq = [];
lb = Torquebound(4,1)*ones(Np,1); ub = Torquebound(4,2)*ones(Np,1);
Pnp = Xnfa(end,1); Vnp = Xnfa(end,2);
Xend(i,4) = Pnp; Vend(i,4) = Vnp; Tnp = (Ca(4)*Vnp.^2 + Mass(4)*g*f)/Eta*R(4);
% MPC-subproblem
[u, Cost(i,4), Exitflg(i,4), output] = fmincon(@(u) Costfunction2( Np, Tim_step, X0 ,u, Vehicle_Type,Q3,Xdes,R3,F3,Xa,G3,Xnfa), ...
u0, A, b, Aeq, beq, lb, ub, @(u) Nonlinearconstraints(Np, Tim_step, X0, u, Vehicle_Type,Pnp,Vnp,Tnp),options);
% state involves one step
U(i,4) = u(1);
[Postion(i,4),Velocity(i,4),Torque(i,4)] = VehicleDynamic(U(i,4),Tim_step,Postion(i-1,4),Velocity(i-1,4),Torque(i-1,4),Mass(4),R(4),g,f,Eta,Ca(4),Tao(4));
% Update assumed state
Temp = zeros(Np+1,3);
Temp(1,:) = [Postion(i,4),Velocity(i,4),Torque(i,4)];
ua(1:Np-1,4) = u(2:Np);
for j = 1:Np-1
[Temp(j+1,1),Temp(j+1,2),Temp(j+1,3)] = VehicleDynamic(ua(j,4),Tim_step,Temp(j,1),Temp(j,2),Temp(j,3),Mass(4),R(4),g,f,Eta,Ca(4),Tao(4));
end
ua(Np,4) = (Ca(4)*Temp(Np,2).^2 + Mass(4)*g*f)/Eta*R(4);
[Temp(Np+1,1),Temp(Np+1,2),Temp(Np+1,3)] = VehicleDynamic(ua(Np,4),Tim_step,Temp(Np,1),Temp(Np,2),Temp(Np,3),Mass(4),R(4),g,f,Eta,Ca(4),Tao(4));
Pa_next(:,4) = Temp(:,1);
Va_next(:,4) = Temp(:,2);
toc
%% vehicle five
tic
Vehicle_Type = [Mass(5),R(5),g,f,Eta,Ca(5),Tao(5)];
X0 = [Postion(i-1,5),Velocity(i-1,5),Torque(i-1,5)];
Pd = zeros(Np+1,1); Vd = zeros(Np+1,1);
Xdes = [Pd,Vd]; % Udes = Td;
Xa = [Pa(:,5),Va(:,5)];
Xnfa = [Pa(:,4) - d, Va(:,4)];
u0 = ua(:,5);
A = [];b = []; Aeq = []; beq = [];
lb = Torquebound(5,1)*ones(Np,1); ub = Torquebound(5,2)*ones(Np,1);
Pnp = Xnfa(end,1); Vnp = Xnfa(end,2);
Xend(i,5) = Pnp; Vend(i,5) = Vnp; Tnp = (Ca(5)*Vnp.^2 + Mass(5)*g*f)/Eta*R(5);
% MPC -subproblem
[u, Cost(i,5), Exitflg(i,5), output] = fmincon(@(u) Costfunction2( Np, Tim_step, X0 ,u, Vehicle_Type,Q3,Xdes,R3,F3,Xa,G3,Xnfa), ...
u0, A, b, Aeq, beq, lb, ub, @(u) Nonlinearconstraints(Np, Tim_step, X0, u, Vehicle_Type,Pnp,Vnp,Tnp),options);
% state involves one step
U(i,5) = u(1);
[Postion(i,5),Velocity(i,5),Torque(i,5)] = VehicleDynamic(U(i,5),Tim_step,Postion(i-1,5),Velocity(i-1,5),Torque(i-1,5),Mass(5),R(5),g,f,Eta,Ca(5),Tao(5));
% update assumed state
Temp = zeros(Np+1,3);
Temp(1,:) = [Postion(i,5),Velocity(i,5),Torque(i,5)];
ua(1:Np-1,5) = u(2:Np);
for j = 1:Np-1
[Temp(j+1,1),Temp(j+1,2),Temp(j+1,3)] = VehicleDynamic(ua(j,5),Tim_step,Temp(j,1),Temp(j,2),Temp(j,3),Mass(5),R(5),g,f,Eta,Ca(5),Tao(5));
end
ua(Np,5) = (Ca(5)*Temp(Np,2).^2 + Mass(5)*g*f)/Eta*R(5);
[Temp(Np+1,1),Temp(Np+1,2),Temp(Np+1,3)] = VehicleDynamic(ua(Np,5),Tim_step,Temp(Np,1),Temp(Np,2),Temp(Np,3),Mass(5),R(5),g,f,Eta,Ca(5),Tao(5));
Pa_next(:,5) = Temp(:,1);
Va_next(:,5) = Temp(:,2);
toc
%% vehicle six
tic
Vehicle_Type = [Mass(6),R(6),g,f,Eta,Ca(6),Tao(6)]; % the vehicle parameters : Mass,R,g,f,Eta,Ca(i),Tao,
X0 = [Postion(i-1,6),Velocity(i-1,6),Torque(i-1,6)]; % the vehicle variable in the last time
Pd = zeros(Np+1,1); Vd = zeros(Np+1,1);
Xdes = [Pd,Vd];
Xa = [Pa(:,6),Va(:,6)];
Xnfa = [Pa(:,5) - d, Va(:,5)];
u0 = ua(:,6);
A = [];b = []; Aeq = []; beq = [];
lb = Torquebound(6,1)*ones(Np,1); ub = Torquebound(6,2)*ones(Np,1);
Pnp = Xnfa(end,1); Vnp = Xnfa(end,2);
Xend(i,6) = Pnp; Vend(i,6) = Vnp; Tnp = (Ca(6)*Vnp.^2 + Mass(6)*g*f)/Eta*R(6);
% MPC 优化求解
[u, Cost(i,6), Exitflg(i,6), output] = fmincon(@(u) Costfunction2( Np, Tim_step, X0 ,u, Vehicle_Type,Q3,Xdes,R3,F3,Xa,G3,Xnfa), ...
u0, A, b, Aeq, beq, lb, ub, @(u) Nonlinearconstraints(Np, Tim_step, X0, u, Vehicle_Type,Pnp,Vnp,Tnp),options);
% state involves one step
U(i,6) = u(1);
[Postion(i,6),Velocity(i,6),Torque(i,6)] = VehicleDynamic(U(i,6),Tim_step,Postion(i-1,6),Velocity(i-1,6),Torque(i-1,6),Mass(6),R(6),g,f,Eta,Ca(6),Tao(6));
% update assumed state
Temp = zeros(Np+1,3);
Temp(1,:) = [Postion(i,6),Velocity(i,6),Torque(i,6)];
ua(1:Np-1,6) = u(2:Np);
for j = 1:Np-1
[Temp(j+1,1),Temp(j+1,2),Temp(j+1,3)] = VehicleDynamic(ua(j,6),Tim_step,Temp(j,1),Temp(j,2),Temp(j,3),Mass(6),R(6),g,f,Eta,Ca(6),Tao(6));
end
ua(Np,6) = (Ca(6)*Temp(Np,2).^2 + Mass(6)*g*f)/Eta*R(6);
[Temp(Np+1,1),Temp(Np+1,2),Temp(Np+1,3)] = VehicleDynamic(ua(Np,6),Tim_step,Temp(Np,1),Temp(Np,2),Temp(Np,3),Mass(6),R(6),g,f,Eta,Ca(6),Tao(6));
Pa_next(:,6) = Temp(:,1);
Va_next(:,6) = Temp(:,2);
toc
%% vehicle seven
tic
Vehicle_Type = [Mass(7),R(7),g,f,Eta,Ca(7),Tao(7)]; % the vehicle parameters : Mass,R,g,f,Eta,Ca(i),Tao,
X0 = [Postion(i-1,7),Velocity(i-1,7),Torque(i-1,7)]; % the vehicle variable in the last time
Pd = zeros(Np+1,1); Vd = zeros(Np+1,1);
Xdes = [Pd,Vd]; % Udes = Td;
Xa = [Pa(:,7),Va(:,7)];
Xnfa = [Pa(:,6) - d, Va(:,6)];
u0 = ua(:,7);
A = [];b = []; Aeq = []; beq = [];
lb = Torquebound(7,1)*ones(Np,1); ub = Torquebound(7,2)*ones(Np,1);
Pnp = Xnfa(end,1); Vnp = Xnfa(end,2);
Xend(i,7) = Pnp; Vend(i,7) = Vnp; Tnp = (Ca(7)*Vnp.^2 + Mass(7)*g*f)/Eta*R(7);
% MPC-subproblem
[u, Cost(i,7), Exitflg(i,7), output] = fmincon(@(u) Costfunction2( Np, Tim_step, X0 ,u, Vehicle_Type,Q3,Xdes,R3,F3,Xa,G3,Xnfa), ...
u0, A, b, Aeq, beq, lb, ub, @(u) Nonlinearconstraints(Np, Tim_step, X0, u, Vehicle_Type,Pnp,Vnp,Tnp),options);
% state involves one step
U(i,7) = u(1);
[Postion(i,7),Velocity(i,7),Torque(i,7)] = VehicleDynamic(U(i,7),Tim_step,Postion(i-1,7),Velocity(i-1,7),Torque(i-1,7),Mass(7),R(7),g,f,Eta,Ca(7),Tao(7));
% update assumed state
Temp = zeros(Np+1,3);
Temp(1,:) = [Postion(i,7),Velocity(i,7),Torque(i,7)];
ua(1:Np-1,7) = u(2:Np);
for j = 1:Np-1
[Temp(j+1,1),Temp(j+1,2),Temp(j+1,3)] = VehicleDynamic(ua(j,7),Tim_step,Temp(j,1),Temp(j,2),Temp(j,3),Mass(7),R(7),g,f,Eta,Ca(7),Tao(7));
end
ua(Np,7) = (Ca(7)*Temp(Np,2).^2 + Mass(7)*g*f)/Eta*R(7);
[Temp(Np+1,1),Temp(Np+1,2),Temp(Np+1,3)] = VehicleDynamic(ua(Np,7),Tim_step,Temp(Np,1),Temp(Np,2),Temp(Np,3),Mass(7),R(7),g,f,Eta,Ca(7),Tao(7));
Pa_next(:,7) = Temp(:,1);
Va_next(:,7) = Temp(:,2);
toc
%% Update assumed data
Pa = Pa_next;
Va = Va_next;
end
FigurePlot