-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathWave_PINN.py
265 lines (206 loc) · 7.66 KB
/
Wave_PINN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""
Code for solving wave equation with a neural network
"""
import time
import torch
import numpy as np
import torch.nn as nn
import matplotlib as mp
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from torchneural import NN
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.manual_seed(69420)
np.random.seed(69420)
class PINN:
'''
Physics informed neural network
'''
def __init__(self, layers, r_max, r_min, act=nn.Tanh()):
'''
Parameters
----------
layers : list
list which must contain the number of neurons for each layer
the number of layers is len(layers) and layers[i] is the
number of neurons on the i-th layer. Only hidden layers must
be declared
r_max : torch.tensor
max value of the input parameters
e.g. if we are in the square 0<x<1 0<y<1 r_max = [1, 1]
r_min : torch.tensor
min value of the input parameters
e.g. if we are in the square 0<x<1 0<y<1 r_max = [0, 0]
act : torch.. function, optional, default torch.nn.Sigmoid
activation functionn of the layer
'''
self.net = NN(dim_in=2, dim_out=1, layers=layers, r_max=r_max, r_min=r_min, act=act).to(device)
self.optimizer = torch.optim.Adam(self.net.parameters())
def f(self, xt):
''' Pde we want to solve id the form f(x, t) = 0
'''
xt = xt.clone()
xt.requires_grad = True
u = self.net(xt) # solution
u_xt = torch.autograd.grad(u.sum(), xt, create_graph=True)[0] # du both along x and t
u_x = u_xt[:, 0] # du/dx
u_t = u_xt[:, 1] # du/dt
u_xx = torch.autograd.grad(u_x, xt,
grad_outputs=torch.ones_like(u_x),
create_graph=True)[0][:, 0] # d^2u/dx^2
u_tt = torch.autograd.grad(u_t, xt,
grad_outputs=torch.ones_like(u_t),
create_graph=True)[0][:, 1] # d^2u/dt^2
PDE = u_tt - u_xx
return PDE
def train(self, n_epoch, xt_0, u_0, domain_bc, u_bc, domain_f):
'''
Train of the nework
Parameters
----------
n_epoch : int
number of ecpoch of train
xt_0 : torch.tensor
point of initial condition
u_0 : torch.tensor
initial condition
domain_bc : torch.tensor
point of boundary condition
u_bc : torch.tensor
value of the function at the boundary
domain_f : torch.tensor
collocation point, point for pde evaluation
Return
------
Loss : list
training loss
'''
Loss = []
for epoch in range(n_epoch):
self.optimizer.zero_grad() # to make the gradients zero
# Loss from initial condition
u0_pred = self.net(xt_0)
mse_0 = torch.mean(torch.square(u0_pred - u_0))
# Loss from temporal derivative on initial condition
xt = xt_0.clone()
xt.requires_grad = True
u = self.net(xt)
u_xt = torch.autograd.grad(u.sum(), xt, create_graph=True)[0]
u_t = u_xt[:, 1]
mse_dudt = torch.mean(torch.square(u_t))
# Loss from boundary condition
u_bc_pred = self.net(domain_bc)
mse_bc = torch.mean(torch.square(u_bc_pred - u_bc))
# Loss from PDE
f_pred = self.f(domain_f)
mse_f = torch.mean(torch.square(f_pred))
loss = mse_0 + mse_bc + mse_f + mse_dudt
loss.backward()
self.optimizer.step()
with torch.autograd.no_grad():
Loss.append(loss.data.detach().cpu().numpy())
if epoch % 100 == 0:
print(f"epoch: {epoch} t_0: {mse_0.data:.3e} bc: {mse_bc.data:.3e} pde: {mse_f.data:.3e} dudt {mse_dudt.data:.3e}")
return Loss
start = time.time()
#=======================================================
# Computational parameters
#=======================================================
# Interval size
x_min = 0.0
x_max = 1.0
t_min = 0.0
t_max = 1.0
# Number of points
N_x = 1000
N_t = 1000
N_col = 1000
# Set initial condition u(x, t=0) = f(x)
xt_0 = np.random.uniform([x_min, 0], [x_max, 0], size=(N_x, 2))
u_0 = np.sin(2*np.pi*xt_0[:, 0:1])
# Set boundary Condition
# u(0, t) = 0 & u(L, t) = 0 for all t > 0
# Left side
xt_bc_1 = np.random.uniform([x_min, t_min], [x_min, t_max], size=(N_t // 2, 2))
u_bc_1 = np.zeros((len(xt_bc_1), 1))
# Right side
xt_bc_2 = np.random.uniform([x_max, t_min], [x_max, t_max], size=(N_t // 2, 2))
u_bc_2 = np.zeros((len(xt_bc_2), 1))
# All boundary condition
domain_bc = np.vstack([xt_bc_1, xt_bc_2])
u_bc = np.vstack([u_bc_1, u_bc_2])
# Collocation points
xt_f = np.random.uniform([x_min, t_min], [x_max, t_max], (N_col, 2))
domain_f = np.vstack([xt_0, domain_bc, xt_f])
#=======================================================
# Convert to Tensor
#=======================================================
xt_0 = torch.tensor(xt_0, dtype=torch.float).to(device)
u_0 = torch.tensor(u_0, dtype=torch.float).to(device)
domain_bc = torch.tensor(domain_bc, dtype=torch.float).to(device)
u_bc = torch.tensor(u_bc, dtype=torch.float).to(device)
domain_f = torch.tensor(domain_f, dtype=torch.float).to(device)
#=======================================================
# Creation of network and train
#=======================================================
n_epoch = 6074 + 1
pinn = PINN([30, 30], [x_min, t_min], [x_max, t_max])
Loss = pinn.train(n_epoch, xt_0, u_0, domain_bc, u_bc, domain_f)
end = time.time() - start
print(f"Elapsed time {end}")
#=======================================================
# Plot
#=======================================================
plt.figure(0)
plt.title("Loss")
plt.xlabel("epochs")
plt.ylabel("Loss")
plt.grid()
plt.yscale("log")
plt.plot(range(n_epoch), Loss)
fig = plt.figure(1)
ax = fig.add_subplot(projection='3d')
x = np.arange(x_min, x_max, 0.01)
t = np.arange(t_min, t_max, 0.01)
X, T = np.meshgrid(x, t)
# Analytical solution
sol = np.sin(2 * np.pi * X) * np.cos(2 * np.pi * T)
x = X.reshape(-1, 1) # Reshape points in the same format
t = T.reshape(-1, 1) # for the input of the network
domain_p = np.hstack([x, t])
domain_p = torch.tensor(domain_p, dtype=torch.float).to(device)
u_pred = pinn.net(domain_p)
u_pred = u_pred.detach().cpu().numpy()
U = u_pred.reshape(X.shape)
ax.plot_surface(X, T, U)
ax.set_title("Wave equation")
ax.set_ylabel('t')
ax.set_xlabel('x')
ax.set_zlabel('u(x, t)')
plt.figure(2)
plt.title("Error")
plt.xlabel('x')
plt.ylabel('t')
error = abs(U - sol)
levels = np.linspace(np.min(error), np.max(error), 40)
c=plt.contourf(X, T, error, levels=levels, cmap='plasma')
plt.colorbar(c)
fig = plt.figure(3)
ax = fig.add_subplot()
line1, = ax.plot([], [], 'r', label='Analytical')
line2, = ax.plot([], [], 'b', label='Prediction')
ax.set_xlabel('x')
ax.set_ylabel('u')
ax.set_xlim(x_min, x_max)
ax.set_ylim(-1.1, 1.1)
ax.grid()
ax.legend()
t = np.arange(t_min, t_max, 0.01)
x = np.arange(x_min, x_max, 0.01)
def update(i):
line1.set_data(x, sol[i, :])
line2.set_data(x, U[i, :])
ax.set_title(f"Time: {t[i]:.2f}")
return line1, line2
ani = animation.FuncAnimation(fig, update, frames=np.arange(0, len(t), 1), interval=50)
plt.show()