-
Notifications
You must be signed in to change notification settings - Fork 0
/
opt.py
87 lines (79 loc) · 4.86 KB
/
opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import argparse
def get_opts():
parser = argparse.ArgumentParser()
parser.add_argument('--root_dir', type=str,
default='nerf_synthetic\\lego',
help='root directory of dataset')
parser.add_argument('--mode', default="normal",
type=str, choices=['d3', 'd3_ib', 'normal','eg3d'],
help='use which system')
parser.add_argument('--dataset_name', type=str, default='blender',
choices=['blender', 'blender_cls_ib', 'llff', "llff_cls", "llff_cls_ib", "replica"], # ib mens batch as img
help='which dataset to train/val')
parser.add_argument('-sn', '--semantic_network', type=str, default='pointnet',
choices=['pointnet', 'conv3d'],
help='use which network to extract semantic features')
parser.add_argument('--pretrained', type=str, default=None,
help="pretrained-model ckpt")
parser.add_argument('--img_wh', nargs="+", type=int, default=[800, 800],
help='resolution (img_w, img_h) of the image')
parser.add_argument('--spheric_poses', default=False, action="store_true",
help='whether images are taken in spheric poses (for llff)')
parser.add_argument('--N_samples', type=int, default=64,
help='number of coarse samples')
parser.add_argument('--N_importance', type=int, default=128,
help='number of additional fine samples')
parser.add_argument('--use_disp', default=False, action="store_true",
help='use disparity depth sampling')
parser.add_argument('--perturb', type=float, default=1.0,
help='factor to perturb depth sampling points')
parser.add_argument('--noise_std', type=float, default=1.0,
help='std dev of noise added to regularize sigma')
parser.add_argument('--loss_type', type=str, default='mse',
choices=['mse', "msece", "msenll"],
help='loss to use')
parser.add_argument('--batch_size', type=int, default=1024,
help='batch size')
parser.add_argument('--chunk', type=int, default=32*1024,
help='chunk size to split the input to avoid OOM')
parser.add_argument('--num_epochs', type=int, default=16,
help='number of training epochs')
parser.add_argument('--num_gpus', type=int, default=1,
help='number of gpus')
parser.add_argument('--ckpt_path', type=str, default=None,
help='pretrained checkpoint path to load')
parser.add_argument('--prefixes_to_ignore', nargs='+', type=str, default=['loss'],
help='the prefixes to ignore in the checkpoint state dict')
parser.add_argument('--optimizer', type=str, default='adam',
help='optimizer type',
choices=['sgd', 'adam', 'radam', 'ranger'])
parser.add_argument('--lr', type=float, default=5e-4,
help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9,
help='learning rate momentum')
parser.add_argument('--weight_decay', type=float, default=0,
help='weight decay')
parser.add_argument('--lr_scheduler', type=str, default='steplr',
help='scheduler type',
choices=['steplr', 'cosine', 'poly'])
#### params for warmup, only applied when optimizer == 'sgd' or 'adam'
parser.add_argument('--warmup_multiplier', type=float, default=1.0,
help='lr is multiplied by this factor after --warmup_epochs')
parser.add_argument('--warmup_epochs', type=int, default=0,
help='Gradually warm-up(increasing) learning rate in optimizer')
###########################
#### params for steplr ####
parser.add_argument('--decay_step', nargs='+', type=int, default=[20],
help='scheduler decay step')
parser.add_argument('--decay_gamma', type=float, default=0.1,
help='learning rate decay amount')
###########################
#### params for poly ####
parser.add_argument('--poly_exp', type=float, default=0.9,
help='exponent for polynomial learning rate decay')
###########################
parser.add_argument('--exp_name', type=str, default='exp',
help='experiment name')
parser.add_argument('--is_crop', type=bool, default=False, help='crop or not')
parser.add_argument('--is_use_mixed_precision', type=bool, default=False, help='mixed precision or not')
return parser.parse_args()