-
Notifications
You must be signed in to change notification settings - Fork 3
/
lstm_text_generation_twitter.py
129 lines (100 loc) · 3.66 KB
/
lstm_text_generation_twitter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from __future__ import print_function
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM
from keras.datasets.data_utils import get_file
from keras.utils import np_utils, generic_utils
import numpy as np
import random, sys
import codecs
import pickle
'''
Example script to generate text from Nietzsche's writings.
At least 20 epochs are required before the generated text
starts sounding coherent.
It is recommended to run this script on GPU, as recurrent
networks are quite computationally intensive.
If you try this script on new data, make sure your corpus
has at least ~100k characters. ~1M is better.
'''
with open('/home/erlenda/.keras/datasets/tweets.pickle',mode='rb') as ff:
text=pickle.load(ff)
print('corpus length:', len(text))
text=text[:200000].lower()
chars = set(text)
print(list(sorted(chars)))
print('total chars:', len(chars))
char_indices = dict((c, i) for i, c in enumerate(chars))
indices_char = dict((i, c) for i, c in enumerate(chars))
# cut the text in semi-redundant sequences of maxlen characters
maxlen = 25
step = 3
sentences = []
next_chars = []
for i in range(0, len(text) - maxlen, step):
sentences.append(text[i : i + maxlen])
next_chars.append(text[i + maxlen])
print('nb sequences:', len(sentences))
print(sentences[0])
print(next_chars[0])
print('\n'*5)
print(sentences[1])
print(next_chars[1])
print('\n'*5)
print(sentences[50])
print(next_chars[50])
print('Vectorization...')
X = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)
y = np.zeros((len(sentences), len(chars)), dtype=np.bool)
for i, sentence in enumerate(sentences):
for t, char in enumerate(sentence):
X[i, t, char_indices[char]] = 1
y[i, char_indices[next_chars[i]]] = 1
sentences[i]=None
layerdims=64
# build the model: 2 stacked LSTM
print('Build model...')
model = Sequential()
model.add(LSTM(len(chars), layerdims, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(layerdims, layerdims, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(layerdims, len(chars)))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adadelta')
# helper function to sample an index from a probability array
def sample(a, temperature=1.0):
a = np.log(a)/temperature
a = np.exp(a)/np.sum(np.exp(a))
return np.argmax(np.random.multinomial(1,a,1))
import codecs
# train the model, output generated text after each iteration
for iteration in range(1, 60):
it1=iteration
print()
print('-' * 50)
print('Iteration', iteration)
model.fit(X, y, batch_size=128, nb_epoch=1)
start_index = random.randint(0, len(text) - maxlen - 1)
for diversity in [0.2, 0.5, 1.0, 1.2]:
print()
print('----- diversity:', diversity)
generated = ''
sentence = text[start_index : start_index + maxlen]
generated += sentence
print('----- Generating with seed: "' + sentence + '"')
sys.stdout.write(generated)
for iteration in range(1000):
x = np.zeros((1, maxlen, len(chars)))
for t, char in enumerate(sentence):
x[0, t, char_indices[char]] = 1.
preds = model.predict(x, verbose=0)[0]
next_index = sample(preds, diversity)
next_char = indices_char[next_index]
generated += next_char
sentence = sentence[1:] + next_char
sys.stdout.write(next_char)
sys.stdout.flush()
with codecs.open('generated_'+str(it1)+'_'+str(diversity)+'.txt',mode='w',encoding='utf-8') as ff:
ff.write(generated)
print()