-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmask_cr.py
149 lines (124 loc) · 5.63 KB
/
mask_cr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import argparse
import numpy as np
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
from torchvision import datasets, transforms
# from models import *
import models
# os.environ['CUDA_VISIBLE_DEVICES'] = '4'
# Prune settings
parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR prune')
parser.add_argument('--dataset', type=str, default='cifar100',
help='training dataset (default: cifar10)')
parser.add_argument('--test-batch-size', type=int, default=256, metavar='N',
help='input batch size for testing (default: 256)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--depth', type=int, default=19,
help='depth of the vgg')
parser.add_argument('--percent', type=float, default=0.5,
help='scale sparse rate (default: 0.5)')
parser.add_argument('--model', default='', type=str, metavar='PATH',
help='path to the model (default: none)')
parser.add_argument('--save', default='', type=str, metavar='PATH',
help='path to save pruned model (default: none)')
parser.add_argument('--save_1', default='', type=str, metavar='PATH',
help='path to save pruned model (default: none)')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='manual start epoch number')
parser.add_argument('--end_epoch', default=160, type=int, metavar='N', help='manual end epoch number')
# quantized parameters
parser.add_argument('--bits_A', default=8, type=int, help='input quantization bits')
parser.add_argument('--bits_W', default=8, type=int, help='weight quantization bits')
parser.add_argument('--bits_G', default=8, type=int, help='gradient quantization bits')
parser.add_argument('--bits_E', default=8, type=int, help='error quantization bits')
parser.add_argument('--bits_R', default=16, type=int, help='rand number quantization bits')
parser.add_argument('--arch', default='vgg', type=str,
help='architecture to use')
# multi-gpus
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if not os.path.exists(args.save):
os.makedirs(args.save)
gpu = args.gpu_ids
gpu_ids = args.gpu_ids.split(',')
args.gpu_ids = []
for gpu_id in gpu_ids:
id = int(gpu_id)
if id > 0:
args.gpu_ids.append(id)
if len(args.gpu_ids) > 0:
torch.cuda.set_device(args.gpu_ids[0])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.arch.endswith('lp'):
# model = models.__dict__[args.arch](bits_A=args.bits_A, bits_E=args.bits_E, bits_W=args.bits_W, dataset=args.dataset, depth=args.depth)
model = models.__dict__[args.arch](8, 8, 32, dataset=args.dataset, depth=args.depth)
elif args.dataset == 'imagenet':
model = models.__dict__[args.arch](pretrained=False)
if len(args.gpu_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=args.gpu_ids)
else:
model = models.__dict__[args.arch](dataset=args.dataset, depth=args.depth)
if args.cuda:
model.cuda()
def pruning(model):
total = 0
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
total += m.weight.data.shape[0]
bn = torch.zeros(total)
index = 0
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
size = m.weight.data.shape[0]
bn[index:(index+size)] = m.weight.data.abs().clone()
index += size
y, i = torch.sort(bn)
thre_index = int(total * args.percent)
thre = y[thre_index]
# print('Pruning threshold: {}'.format(thre))
mask = torch.zeros(total)
index = 0
for k, m in enumerate(model.modules()):
if isinstance(m, nn.BatchNorm2d):
size = m.weight.data.numel()
weight_copy = m.weight.data.abs().clone()
_mask = weight_copy.gt(thre.cuda()).float().cuda()
mask[index:(index+size)] = _mask.view(-1)
# print('layer index: {:d} \t total channel: {:d} \t remaining channel: {:d}'.format(k, _mask.shape[0], int(torch.sum(_mask))))
index += size
# print('Pre-processing Successful!')
return mask
resume = args.save + '/model_best.pth.tar'
print('==> resumeing from model_best ...')
checkpoint = torch.load(resume)
best_epoch = checkpoint['epoch']
print('best epoch: ', best_epoch)
model.load_state_dict(checkpoint['state_dict'])
best_mask = pruning(model)
size = best_mask.size(0)
# resume = args.save_1 + '/model_best.pth.tar'
# resume = args.save_1 + '/ckpt159.pth.tar'
# print('==> resumeing from model_best ...')
# checkpoint = torch.load(resume)
# best_epoch = checkpoint['epoch']
# print('best epoch: ', best_epoch)
# model.load_state_dict(checkpoint['state_dict'])
# best_mask_1 = pruning(model)
# print('overlap rate of two best model: ', float(torch.sum(best_mask==best_mask_1)) / size)
epochs = args.end_epoch - args.start_epoch + 1
overlap = np.zeros((epochs, epochs))
save_dir = os.path.join(args.save, 'overlap_'+str(args.percent))
masks = []
for i in range(args.start_epoch, args.end_epoch+1):
resume = args.save + '/ckpt' + str(i-1) + '.pth.tar'
checkpoint = torch.load(resume)
model.load_state_dict(checkpoint['state_dict'])
masks.append(pruning(model))
for i in range(args.start_epoch, args.end_epoch+1):
for j in range(args.start_epoch, args.end_epoch+1):
overlap[i-1, j-1] = float(torch.sum(masks[i-1] == masks[j-1])) / size
print('overlap[{}, {}] = {}'.format(i-1, j-1, overlap[i-1, j-1]))
np.save(save_dir, overlap)