-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_average_rating_byrelease.py
467 lines (386 loc) · 20.6 KB
/
compute_average_rating_byrelease.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import math
import pandas as pd
import csv
import random
import matplotlib
from common import read_txt, read_csv
import datetime
import csv
import re
import os
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import make_interp_spline
from loguru import logger
#获取 app 得版本日期 和 带标记得用户评论
#num_of_releases = 5
num_of_releases = 1
release_date_index = 1
review_label_index = 0
review_content_index = 1
review_date_index = 2
review_rate_index = 3
#start_release_no = 50 #开始的 release 标号
date_str = '%Y-%m-%d'
date_str1 = '%Y-%m-%d %H:%M'
release_path = 'data/release'
pred_path = 'data'
# 解决中文显示问题
plt.rcParams['font.sans-serif'] = ['SimHei'] #SimHei黑体 FangSong仿宋
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['axes.unicode_minus'] = False
labels = ['feature assessment','feature bug','gui','guide','download',
'accessibility','software','hardware','speed','resource consumption',
'aging','data','privacy','malicious','account',
'contents','ad','price','feedback','competitive products',
'suggest','release'
]
def get_start_release(app_name):
app_release_path='data/release/{}_all_releases.csv'.format(app_name)
releases= pd.read_csv(app_release_path)
num=len(releases)
#可能存在超出索引问题
start_num = random.sample(range(0,num),5)
print(start_num)
return start_num
def get_days(day1, day2):
"""
计算两个日期相隔几天
:param day1: {str} 如 2020-04-05 17:41:20
:param day2:
:return: days {int}
"""
d1 = datetime.datetime.strptime(day1, date_str)
d2 = datetime.datetime.strptime(day2, date_str)
delta = d1 - d2
return delta.days + 1
#获取 app 得版本日期 和 带标记得用户评论
def get_release_date(app_name):
app_release_sub_path = '{}_all_releases.csv'.format(app_name)
app_pred_sub_path = 'review_predicted/{}_review_pred.txt'.format(app_name)
app_release_file = os.path.join(release_path, app_release_sub_path)
app_review_pred_file = os.path.join(pred_path, app_pred_sub_path)
releases = read_csv(app_release_file)
app_categories = ['Wechat']
#改了一下日期显示
result_file = 'data/release/{}_all_releases_1.csv'.format(app_name)
result = open(result_file, 'w', encoding='utf-8', newline='') # , encoding= 'utf-8')
csv_writer = csv.writer(result)
lines = 0
release_date_list = []
for release in releases:
lines += 1
#content = release[1].strip()
releas=release[0]
content=release[7].replace('\n', '')
#print(content)
#exit()
time = release[1].replace('年', '/')
time= time.replace('月', '/')
release[1] = time.replace('日', '').strip()
csv_writer.writerow( release)
#get_release_date('Wechat')
def get_release_date_and_labeled_reviews(app_name):
app_release_sub_path = '{}_all_releases_1.csv'.format(app_name)
app_pred_sub_path = 'review_predicted/{}_review_pred.txt'.format(app_name)
app_release_file = os.path.join(release_path, app_release_sub_path)
app_review_pred_file = os.path.join(pred_path, app_pred_sub_path)
releases = read_csv(app_release_file)
app_categories = ['Wechat']
release_date_list = []
for release in releases:
release_date = re.sub('/', '-', release[1])
release_date = datetime.datetime.strptime(release_date, date_str)
release_date_list.append(release_date)
labeled_reviews = read_txt(app_review_pred_file) # 带标记的评论
#print(release_date_list, labeled_reviews)
return release_date_list, labeled_reviews
#get_release_date_and_labeled_reviews('Wechat')
def get_average_rating(releases_reviews_list):
average_ratings = [0] * 24
for index, review_list in enumerate(releases_reviews_list):
for review in review_list:
review_rate = int(review[review_rate_index])
average_ratings[index] += review_rate
if len(review_list) != 0:
average_ratings[index] = average_ratings[index] / len(review_list)
else:
average_ratings[index] = 2.5
return average_ratings
# 评论推荐,pre_releases_reviews_list 存放了该版本每个关注点对应的评论
def recommending_reviews(reviews_list, index):
if index == 0:
logger.info('评论类型:无用评论')
elif index == 15:
logger.info('评论类型:所有评论')
elif index > 0 and index < 15:
logger.info('评论类型:' + labels[index - 1])
else:
logger.warning('无效索引,请重新输入!')
exit()
logger.info('评论条数:' + str(len(reviews_list[index])))
recommended_reviews = []
for review in reviews_list[index]: # 对index方面进行推荐:[3], 0 : 无关评论 15:所有评论
review_content = review[review_content_index].strip()
review_rate = int(review[review_rate_index])
score = math.exp(-(review_rate / len(review_content)))
recommended_reviews.append([review_content, score, review_rate])
recommended_reviews.sort(key=takeSecond, reverse=True)
return recommended_reviews
def takeSecond(element):
return element[1]
# 获取 应用编号为 start_release_no 的评论
def get_reviews(app_name, start_release_no):
release_date_list, labeled_reviews = get_release_date_and_labeled_reviews(app_name)
#print(release_date_list[start_release_no])
#exit()
date_start = release_date_list[start_release_no]
#print(date_start)
#exit()
date_medium = release_date_list[start_release_no + 1]
#print(date_medium)
date_end = release_date_list[start_release_no + num_of_releases + 1]
#print(date_end)
# 存放之前 num_of_releases 个版本对应标签的评论, 15 放所有评论, 0 放无用评论
pre_releases_reviews_list = [[] for _ in range(24)]
#print(pre_releases_reviews_list)
# 存放最近一版本对应标签的评论
latest_releases_reviews_list = [[] for _ in range(24)]
# print(pre_releases_reviews_list)
for labeled_review in labeled_reviews:
labeled_review = labeled_review.strip('\n').split('-*-')
# 评论的标签列表
review_label_list = labeled_review[review_label_index].split('-')
# 评论的内容
review_content = labeled_review[review_content_index]
# 评论的日期
review_date = labeled_review[review_date_index]
review_date = datetime.datetime.strptime(review_date[0:-3], date_str1)
review_rate = labeled_review[review_rate_index]
#print(review_rate)
# 评论的对应评分
# review_rate = labeled_review[review_rate_index]
if review_date <= date_start and review_date > date_medium:
for label in review_label_list:
latest_releases_reviews_list[23].append(labeled_review)
latest_releases_reviews_list[int(label)].append(labeled_review)
elif review_date <= date_medium and review_date >= date_end:
for label in review_label_list:
pre_releases_reviews_list[23].append(labeled_review)
pre_releases_reviews_list[int(label)].append(labeled_review)
#print(latest_releases_reviews_list)
return pre_releases_reviews_list, latest_releases_reviews_list
# 从评分变化列表中返回处于特别健康 和 特别不健康的值的索引列表
def get_very_positive_negative_index(rating_change_list):
very_positive_index_list, very_negative_index_list = [], []
for index, value in enumerate(rating_change_list):
if index == 0 or index == 15: # 无用评论/所有评论 的评分变化情况
continue
if value >= 1.49:
very_positive_index_list.append(index)
elif value <= -1.55:
very_negative_index_list.append(index)
return very_positive_index_list, \
very_negative_index_list
def get_rating_change_list(app_name_list=['dingtalk', 'alipay', 'netmusic', 'tencentvideo', 'wechat']):
rating_change_list = []
f = open('medium_result.txt', 'w+', encoding='utf-8')
all_release_change_average_ratings = []
release_date_list = []
for app_name in app_name_list:
f.write('----------------------start ' + app_name + '----------------------' + '\n')
release_date_list, labeled_reviews = get_release_date_and_labeled_reviews(app_name)
# 对每个 app 每个版本进行操作
for start_release_no in range(0, len(release_date_list) - num_of_releases - 1):
# 前 num_of_releases 个版本内的评论列表, 最近一个版本的评论列表
pre_releases_reviews_list, latest_releases_reviews_list = get_reviews(app_name, start_release_no)
pre_average_ratings = get_average_rating(pre_releases_reviews_list)
#print(pre_average_ratings)
latest_average_rating = get_average_rating(latest_releases_reviews_list)
# 评论推荐,pre_releases_reviews_list 存放了该版本每个关注点对应的评论
# recommended_reviews = recommending_reviews(pre_releases_reviews_list)
for index, average_rating in enumerate(pre_average_ratings):
if average_rating != 0 and latest_average_rating[index] != 0:
rating_change_list.append(latest_average_rating[index] - average_rating)
# 当前 app 在当前版本上所有类型评论集合得评分变化情况
change_average_ratings = np.array(latest_average_rating) - np.array(pre_average_ratings)
all_release_change_average_ratings.append(change_average_ratings)
rating_change_list.sort()
return all_release_change_average_ratings, release_date_list[:-6], \
rating_change_list # 获得所有评分变化数据
# 绘制 评分变化随着版本变化的曲线
def plot_rating_change(app_name_list=['Wechat']):
# all_release_change_average_ratings 每一行为一个版本 各个关注点的评分变化值
all_release_change_average_ratings, release_date_list, _ = get_rating_change_list(app_name_list)
all_release_change_average_ratings = np.array(all_release_change_average_ratings)
# print(all_release_change_average_ratings)
# print(np.transpose(all_release_change_average_ratings)[1]) # 评分变化值的变化列表,每一行为一个关注点
# print(len(all_release_change_average_ratings), len(release_date_list))
# 初始化横坐标的所有值(这里表示为时间的变化)
release_date_list = np.transpose(release_date_list)[50:70]
x = range(1, len(release_date_list) + 1)
# 初始化所有不同数据集纵坐标表示的值(可以表示团队个人一天工作时间的分配)
user_concern_bug, user_concern_gui, user_concern_performance, user_concern_security, \
user_concern_resource, user_concern_feedback, user_concern_download, user_concern_pricing, \
user_concern_ad, user_concern_advice, user_concern_guide, user_concern_compatibility, \
user_concern_update, user_concern_evaluation, app = np.transpose(all_release_change_average_ratings)[1:16]
labels = ['feature assessment', 'feature bug', 'gui', 'guide', 'download',
'accessibility', 'software', 'hardware', 'speed', 'resource consumption',
'aging', 'data', 'privacy', 'malicious', 'account',
'contents', 'ad', 'price', 'feedback', 'competitive products',
'suggest', 'release']
# 注意传入的多个可迭代对象的维度应该相同
# plt.plot(x, user_concern_bug, user_concern_gui, user_concern_performance,
# labels=['BUG', 'GUI', '性能'], colors=['#6d904f', '#fc4f30', '#008fd5'])
x_new = np.linspace(x[0], x[-1], 300) # 300 represents number of points to make between T.min and T.max
y_smooth_1 = make_interp_spline(x, user_concern_bug[50:70])(x_new)
y_smooth_2 = make_interp_spline(x, user_concern_gui[50:70])(x_new)
y_smooth_3 = make_interp_spline(x, user_concern_performance[50:70])(x_new) # 性能这一关注点
y_smooth_4 = make_interp_spline(x, user_concern_security[50:70])(x_new)
app_smoth = make_interp_spline(x, app[50:70])(x_new) # 整个 app
# 画单个图
# plt.plot(x_new, y_smooth_1, color='darkred', label='关注点:BUG', linewidth=1)
# plt.plot(x_new, y_smooth_2, color='#6d904f', label='关注点:GUI', linewidth=1)
# plt.plot(x_new, y_smooth_3, color='#fc4f30', label='关注点:性能', linewidth=1)
# plt.plot(x_new, y_smooth_4, color='#008fd5', label='关注点:安全 & 授权', linewidth=1)
# plt.legend(loc=1)
# plt.xlabel('应用版本') # 设置 x 轴标签及其字体大小
# plt.ylabel('评分变化值')
# # 添加水平直线
# plt.axhline(y=-4, ls="--", c="red", linewidth=1)
# plt.axhline(y=-1.55, ls="--", c="orangered", linewidth=1)
# plt.axhline(y=-0.79, ls="--", c="tomato", linewidth=1)
# plt.axhline(y=0.73, ls="--", c="palegreen", linewidth=1)
# plt.axhline(y=1.49, ls="--", c="palegreen", linewidth=1)
# plt.axhline(y=4, ls="--", c="lawngreen", linewidth=1)
# plt.savefig('fig/dingtalk2.jpg', dpi=500, bbox_inches='tight')
# # 美化输出
# plt.tight_layout()
# plt.show()
# 后续全为画多个图
# 画图注释详见同目录下 matplotlib_example.py
plt.figure(figsize=(20, 20))
plt.subplot(221) # 子图, 两行两列,目前第1个图
plt.plot(x_new, y_smooth_1, color='darkred', label='关注点:feature assessment', linewidth=2)
plt.legend(loc=1, fontsize=20)
plt.xlabel('应用版本', fontsize=20) # 设置 x 轴标签及其字体大小
plt.ylabel('评分变化值', fontsize=20)
# 添加水平直线
plt.axhline(y=-4, ls="--", c="red", linewidth=2)
plt.axhline(y=-1.55, ls="--", c="orangered", linewidth=2)
plt.axhline(y=-0.79, ls="--", c="tomato", linewidth=2)
plt.axhline(y=0.73, ls="--", c="palegreen", linewidth=2)
plt.axhline(y=1.49, ls="--", c="palegreen", linewidth=2)
plt.axhline(y=4, ls="--", c="lawngreen", linewidth=2)
plt.subplot(222) # 子图, 两行两列,目前第1个图
plt.plot(x_new, y_smooth_2, color='#6d904f', label='关注点:feature bug', linewidth=2)
plt.legend(loc=1, fontsize=20)
plt.xlabel('应用版本', fontsize=20) # 设置 x 轴标签及其字体大小
plt.ylabel('评分变化值', fontsize=20)
# 添加水平直线
plt.axhline(y=-4, ls="--", c="red", linewidth=2)
plt.axhline(y=-1.55, ls="--", c="orangered", linewidth=2)
plt.axhline(y=-0.79, ls="--", c="tomato", linewidth=2)
plt.axhline(y=0.73, ls="--", c="palegreen", linewidth=2)
plt.axhline(y=1.49, ls="--", c="palegreen", linewidth=2)
plt.axhline(y=4, ls="--", c="lawngreen", linewidth=2)
plt.subplot(223)
plt.plot(x_new, y_smooth_3, color='#fc4f30', label='关注点:gui', linewidth=2)
plt.legend(loc=1, fontsize=20)
plt.xlabel('应用版本', fontsize=20) # 设置 x 轴标签及其字体大小
plt.ylabel('评分变化值', fontsize=20)
# 添加水平直线
plt.axhline(y=-4, ls="--", c="red", linewidth=2)
plt.axhline(y=-1.55, ls="--", c="orangered", linewidth=2)
plt.axhline(y=-0.79, ls="--", c="tomato", linewidth=2)
plt.axhline(y=0.73, ls="--", c="palegreen", linewidth=2)
plt.axhline(y=1.49, ls="--", c="palegreen", linewidth=2)
plt.axhline(y=4, ls="--", c="lawngreen", linewidth=2)
plt.subplot(224)
plt.plot(x_new, y_smooth_4, color='#008fd5', label='关注点:guide', linewidth=2)
# plt.plot(x_new, app_smoth, color='peru', label='钉钉', linewidth=2)
# plt.plot(x, user_concern_bug, color='#6d904f', label='BUG', linewidth=2)
# plt.plot(x, user_concern_gui, color='#fc4f30', label='GUI', linewidth=2)
# plt.plot(x, user_concern_performance, color='#008fd5', label='性能', linewidth=2)
# legend接受loc参数可以改变显示标签的放置位置, 可以用一个元组加两个数来表示距离坐标轴原点的百分比距离,\
# 也可以使用字符串表示:
plt.legend(loc=1, fontsize=20)
plt.xlabel('应用版本', fontsize=20) # 设置 x 轴标签及其字体大小
plt.ylabel('评分变化值', fontsize=20)
# 添加水平直线
plt.axhline(y=-4, ls="--", c="red", linewidth=2)
plt.axhline(y=-1.55, ls="--", c="orangered", linewidth=2)
plt.axhline(y=-0.79, ls="--", c="tomato", linewidth=2)
plt.axhline(y=0.73, ls="--", c="palegreen", linewidth=2)
plt.axhline(y=1.49, ls="--", c="palegreen", linewidth=2)
plt.axhline(y=4, ls="--", c="lawngreen", linewidth=2)
plt.savefig('figure/wechat2.jpg', dpi=500, bbox_inches='tight')
# 美化输出
plt.tight_layout()
plt.show()
if __name__ == '__main__':
print('aaa')
#plot_rating_change()
#exit()
start_release_no = 0
start_release_list=[]
rating_change_list = []
#app_name_list = ['58job','airbnb','alipay','amap','baicizhan','baidu','bilibili','CHINA DAILY',
#'economist','iqiyi','kailichen','mafengwo','NetEase Cloud Music','perfect piano',
#'quark','wecom','zhihu','zoom','zuoyebang']
app_name_list = ['bilibili']
start_release_list=get_start_release('bilibili')
for start_release_no in start_release_list:
#print(start_release_no)
# chinese_app_name = ['钉钉', '支付宝', '网易云音乐', '腾讯视频']
all_release_change_average_ratings = []
release_date_list = []
result_file = 'data/rating.csv'
#result = open(result_file, 'w', encoding='utf-8', newline='')
#csv_writer = csv.writer(result)
lines = 0
rating_list=[]
for app_name in app_name_list:
#get_release_date(app_name)
pre_releases_reviews_list, latest_releases_reviews_list = get_reviews(app_name, start_release_no)
# f.write('----------------------start ' + app_name + '----------------------' + '\n')
release_date_list, labeled_reviews = get_release_date_and_labeled_reviews(app_name)
date_start = release_date_list[start_release_no]
date_medium = release_date_list[start_release_no + 1]
# 不要再隔五个版本了
# date_end = release_date_list[start_release_no + num_of_releases + 1]
date_end = release_date_list[start_release_no + num_of_releases + 1]
# 存放之前 num_of_releases 个版本对应标签的评论, 23放所有评论
pre_releases_reviews_list = [[] for _ in range(24)]
# 存放最近一版本对应标签的评论
latest_releases_reviews_list = [[] for _ in range(24)]
# print(latest_releases_reviews_list)
lines += 1
for labeled_review in labeled_reviews:
labeled_review = labeled_review.strip('\n').split('-*-')
# 评论的标签列表
review_label_list = labeled_review[review_label_index].split('-')
# 评论的内容
review_content = labeled_review[review_content_index]
# 评论的日期
review_date = labeled_review[review_date_index]
review_date = datetime.datetime.strptime(review_date[0:-3], date_str1)
#print(review_date)
# 评论的对应评分
review_rate = labeled_review[review_rate_index]
# print(review_rate)
if review_date <= date_start and review_date > date_medium:
for label in review_label_list:
latest_releases_reviews_list[23].append(labeled_review)
latest_releases_reviews_list[int(label)].append(labeled_review)
elif review_date <= date_medium and review_date >= date_end:
for label in review_label_list:
pre_releases_reviews_list[23].append(labeled_review)
pre_releases_reviews_list[int(label)].append(labeled_review)
pre_average_ratings = get_average_rating(pre_releases_reviews_list)
#print(pre_average_ratings)
latest_average_rating = get_average_rating(latest_releases_reviews_list)
rating_list += [[start_release_no]+[pre_average_ratings]+[latest_average_rating]]
print(rating_list)
print(start_release_list)
exit()