-
Notifications
You must be signed in to change notification settings - Fork 7
/
server.py
539 lines (461 loc) · 18.3 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Binary for training translation models and decoding from them.
Running this program without --decode will download the WMT corpus into
the directory specified as --data_dir and tokenize it in a very basic way,
and then start training a model saving checkpoints to --train_dir.
Running with --decode starts an interactive loop so you can see how
the current checkpoint translates English sentences into French.
See the following papers for more information on neural translation models.
* http://arxiv.org/abs/1409.3215
* http://arxiv.org/abs/1409.0473
* http://arxiv.org/abs/1412.2007
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from flask import Flask, json, render_template
from flask_ask import Ask, request, session, question, statement, context, audio, current_stream
import math
import os
import random
import sys
import time
import logging
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
import pickle
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import string
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.tag import pos_tag
import nltk
from operator import itemgetter
model = None
vectorizer = None
_buckets = [(5, 10), (10, 15), (20, 25), (40, 50)]
app = Flask(__name__)
ask = Ask(app, "/")
logging.getLogger("flask_ask").setLevel(logging.DEBUG)
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
import data_utils
import seq2seq_model
tf.app.flags.DEFINE_float("learning_rate", 0.5, "Learning rate.")
tf.app.flags.DEFINE_float("learning_rate_decay_factor", 0.99,
"Learning rate decays by this much.")
tf.app.flags.DEFINE_float("max_gradient_norm", 5.0,
"Clip gradients to this norm.")
tf.app.flags.DEFINE_integer("batch_size", 64,
"Batch size to use during training.")
tf.app.flags.DEFINE_integer("size", 1024, "Size of each model layer.")
tf.app.flags.DEFINE_integer("num_layers", 3, "Number of layers in the model.")
tf.app.flags.DEFINE_integer("cont_vocab_size", 40000, "English vocabulary size.")
tf.app.flags.DEFINE_integer("resp_vocab_size", 40000, "French vocabulary size.")
tf.app.flags.DEFINE_string("data_dir", "./Data", "Data directory")
tf.app.flags.DEFINE_string("train_dir", "./Checkpoints", "Training directory.")
tf.app.flags.DEFINE_integer("max_train_data_size", 0,
"Limit on the size of training data (0: no limit).")
tf.app.flags.DEFINE_integer("steps_per_checkpoint", 200,
"How many training steps to do per checkpoint.")
tf.app.flags.DEFINE_boolean("decode", False,
"Set to True for interactive decoding.")
tf.app.flags.DEFINE_boolean("self_test", False,
"Run a self-test if this is set to True.")
tf.app.flags.DEFINE_boolean("use_fp16", False,
"Train using fp16 instead of fp32.")
FLAGS = tf.app.flags.FLAGS
vectorizerWG = pickle.load(open("vectorizerWG.pickle", "rb"))
XWG = pickle.load(open("transformed_arr.pickle", "rb"))
freqWG = pickle.load(open("freq.pkl", "rb"))
f = open('klingon.txt', 'r')
klingon_wordslist = [l.strip() for l in f.readlines()]
f.close()
class Node:
def __init__(self, tuple, prev_word):
self.word = tuple[0]
self.pos = tuple[1]
self.next = {}
self.prev = [prev_word]
self.prev = set(self.prev)
self.freq = 1
def add_next(self, word):
if word in self.next.keys():
self.next[word] += 1
else:
self.next.update({word: 1})
def add_prev(self, prev_word):
self.prev.add(prev_word)
self.prev = set(self.prev)
class Graph:
counter = 0
def __init__(self):
self.word_dict = {}
def update_word_dict(self, node):
if node.word in self.word_dict.keys():
node_list = self.word_dict.get(node.word)
node_list.append(node.word)
#print(node_list)
self.word_dict.update({node.word: node_list})
else:
self.word_dict.update({node.word: [node]})
def check_word_dict(self, word, pos):
if word in self.word_dict.keys():
pos_dict = self.word_dict.get(word)
if pos in pos_dict.keys():
return pos_dict.get(pos)
return "No pos"
return "No word"
def add_sentence(self, tokens):
tokens.insert(0, ('XSTARTX', 'X'))
tokens.insert(len(tokens), ('XENDX', 'X'))
prev_word = None
prev_node = None
for pair in tokens:
if pair[1] == 'CD':
continue
curr_node = self.check_word_dict(pair[0], pair[1])
if curr_node == "No word":
curr_node = Node(pair, prev_word)
self.word_dict.update({curr_node.word: {curr_node.pos: curr_node}})
elif curr_node == "No pos":
curr_node = Node(pair, prev_word)
node_dict = self.word_dict.get(curr_node.word)
node_dict.update({curr_node.pos: curr_node})
self.word_dict.update({curr_node.word: node_dict})
else:
curr_node.freq += 1
curr_node.add_prev(prev_word)
if prev_node != None:
prev_node.add_next(curr_node.word)
prev_word = curr_node.word
prev_node = curr_node
def print_graph(self):
for node in self.word_dict.keys():
print("NODE " + node)
pos_dict = self.word_dict.get(node)
for pos in pos_dict:
value = pos_dict.get(pos)
print(value.word + value.pos + str(value.freq))
print(value.prev)
print(value.next)
def generate_new(tokens, sent):
print (tokens)
new_sents = []
print("FUUUU")
for i in range(0, len(tokens)-1):
first = tokens[i]
second = tokens[i + 1]
first_found = Graph.check_word_dict(graph, first[0], first[1])
second_found = Graph.check_word_dict(graph, second[0], second[1])
if first_found != "No word" and first_found != "No pos" and second_found != "No word" and second_found != "No pos":
first_next = first_found.next.keys()
second_prev = second_found.prev
options = set(first_next).intersection(second_prev)
for reply in options:
if (first[0] == "XSTARTX"):
new_line = str.upper(reply) + " " + sent
new_sents.append(new_line)
elif (second[0] == "XENDX"):
new_line = sent + " " + str.upper(reply)
new_sents.append(new_line)
else:
# new_line = sent[0:sent.find(first[0])+len(first[0])] + " " + str.upper(reply) + " " + sent[sent.find(second[0]):]
first_part = sent[0:sent.find(first[0])+len(first[0])] + " "
last_part = " " + sent.replace(first_part,'')
new_line = first_part + str.upper(reply) + last_part
new_sents.append(new_line)
if new_sents:
final_sent = rank_options(new_sents)
else:
final_sent = sent
return final_sent
def derandomizer(candidates):
print("CANDIDATES")
#print(candidates)
option_file = "derandom_options"
with open(option_file, 'w') as f:
for s in candidates:
f.write(s.strip()+"\n")
f.close()
try:
op = subprocess.check_output("java -mx150m -cp 'stanford-parser.jar:' edu.stanford.nlp.parser.lexparser.LexicalizedParser -outputFormat 'semanticGraph' -printPCFGkBest 1 englishPCFG.ser.gz derandom_options", cwd="/home/ubuntu/models/tutorials/rnn/translate/stanford-parser-2008-10-26", shell=True)
a = op.decode("utf-8").strip().replace('\r', '')
values = a.split("\n")
prob_list = []
for v in values:
idx = v.find("score ")
prob = float(v[idx + len("score "):])
prob_list.append(prob)
max_prob = max(prob_list)
options_idx = [i for i, val in enumerate(prob_list) if val == max_prob]
final_idx = random.choice(options_idx)
return candidates[final_idx]
except:
return random.choice(candidates)
def rank_options(new_sents):
len_new_sents = len(new_sents)
print (len_new_sents)
if len_new_sents > 700:
print ("SHORTENED")
new_sents = new_sents[:700]
wordlist_1 = ["spock", "captain", "kirk", "doctor", "bones", "mccoy", "jim", "lieutenant", "yeoman", "janice", "uhura", "scott", "scotty", "sulu", "sir", "commodore", "commander", "chief", "picard"]
wordlist_2 = ["space", "galaxy", "phasers", "enterprise", "janeway", "worf", "jadzia", "kasidy"]
wordlist_3 = ["vulcan", "engineering", "control", "controls"]
new_sents = list(set(new_sents))
prob_list = []
for sent in new_sents:
words = sent.split()
prob = 1
log_prob = 0
for i in range(1, len(words)):
if words[i] not in freqWG:
words[i] = "UNK"
if words[i-1] not in freqWG:
words[i-1] = "UNK"
bigram = words[i-1] + " " + words[i]
bi_idx = vectorizerWG.vocabulary_.get(bigram)
idx = vectorizerWG.vocabulary_.get(words[i])
if bi_idx != None and idx != None:
word_count = XWG[:, idx]
bi_count = XWG[:, bi_idx]
else:
word_count = 500
bi_count = 1
prob = prob * (bi_count / word_count)
log_prob = log_prob + (math.log(bi_count) - math.log(word_count))
prob_list.append(prob)
# print(sent)
# print(log_prob)
max_prob = max(prob_list)
# print(max_prob)
options_idx = [i for i,val in enumerate(prob_list) if val==max_prob]
# print (options_idx)
# print (new_sents)
options = [new_sents[i] for i in options_idx]
# print(options)
keywords = []
for sent in options:
# print ("sent: " + sent)
key=''
for word in word_tokenize(sent):
if word.isupper():
key = word
keywords.append(key.lower())
# print ("key "+ key)
break
# print (keywords)
inter = set(wordlist_1).intersection(keywords)
if not inter:
inter = set(wordlist_2).intersection(keywords)
if not inter:
inter = set(wordlist_3).intersection(keywords)
#print(inter)
final_idx = 0
# No keyword matches
if not inter:
#final_idx = random.choice(options_idx)
#return new_sents[final_idx]
return derandomizer(new_sents)
final_options = []
for sent in options:
#print (sent)
wordlist = word_tokenize(sent.lower())
for word in wordlist:
if word in inter:
idx = wordlist.index(word)
# print ("idx " + str(idx))
# print("len "+ str(len(word_tokenize(sent))))
if idx != -1:
if idx == 0 or idx == (len(word_tokenize(sent))-1):
final_options.append(sent)
else:
print ("IN MIDDLE")
else:
print ("NO KEYWORD")
# print (final_options)
if not final_options:
final_options = options
print('NOPE')
#return random.choice(final_options)
return derandomizer(final_options)
sess = tf.Session()
st_file = 'star_trek_dialog.bin'
# st_file = 'star_trek_dialog_subset.bin'
graph = Graph()
print ('Creating Graph')
with open(st_file, 'r') as file:
for line in file:
line = line.lower().strip()
sentences = sent_tokenize(line)
for sent in sentences:
try:
tokens = nltk.pos_tag([word.strip(string.punctuation) for word in sent.split(" ")])
Graph.add_sentence(graph, tokens=tokens)
except:
continue
file.close()
print('Star Trek Graph formed')
def create_model(session, forward_only, path, vocab_size,domain):
"""Create translation model and initialize or load parameters in session."""
dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
model = seq2seq_model.Seq2SeqModel(
vocab_size,
vocab_size,
_buckets,
FLAGS.size,
FLAGS.num_layers,
FLAGS.max_gradient_norm,
FLAGS.batch_size,
FLAGS.learning_rate,
FLAGS.learning_rate_decay_factor,
forward_only=forward_only,
dtype=dtype)
all_vars = tf.all_variables()
model_vars = [k for k in all_vars if k.name.startswith(domain)]
ckpt = tf.train.get_checkpoint_state(path)
if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
tf.train.Saver(model_vars).restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
session.run(tf.global_variables_initializer())
return model
def load_model(sess,checkpoint,vocab_size,domain):
# Create model and load parameters.
model = create_model(sess, True,checkpoint,vocab_size,domain)
model.batch_size = 1 # We decode one sentence at a time.
return model
def decode(sess,model,cont_vocab,resp_vocab,sentence):
# Decode from standard input.
while sentence:
# Get token-ids for the input sentence.
token_ids = data_utils.sentence_to_token_ids(tf.compat.as_bytes(sentence), cont_vocab)
# Which bucket does it belong to?
bucket_id = len(_buckets) - 1
for i, bucket in enumerate(_buckets):
if bucket[0] >= len(token_ids):
bucket_id = i
break
else:
logging.warning("Sentence truncated: %s", sentence)
# Get a 1-element batch to feed the sentence to the model.
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
{bucket_id: [(token_ids, [])]}, bucket_id)
# Get output logits for the sentence.
_, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, True)
# This is a greedy decoder - outputs are just argmaxes of output_logits.
outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]
# If there is an EOS symbol in outputs, cut them at that point.
if data_utils.EOS_ID in outputs:
outputs = outputs[:outputs.index(data_utils.EOS_ID)]
# Print out French sentence corresponding to outputs.
response = " ".join([tf.compat.as_str(resp_vocab[output]) for output in outputs])
response = response.replace(" ' ","'")
return response
def predict(sent):
global model
global vectorizer
if(model == None):
with open('my_classifier.pickle','rb') as fid:
model = pickle.load(fid)
if(vectorizer == None):
with open('vectorizer.pickle','rb') as fid:
vectorizer = pickle.load(fid)
sent = [sent]
X_test = vectorizer.transform(sent)
return model.predict(X_test)[0]
def load_models(sess):
with tf.variable_scope("startrek") as startrek_scope:
startrek_model = load_model(sess,'startrek_checkpoint',40000,"startrek")
with tf.variable_scope("cornell") as cornell_scope:
cornell_model = load_model(sess,'cornell_checkpoint',50000,"cornell")
# Load vocabularies.
startrek_from_vocab_path = os.path.join(FLAGS.data_dir,
"startrek/vocab40000.from")
startrek_to_vocab_path = os.path.join(FLAGS.data_dir,
"startrek/vocab40000.to")
startrek_from_vocab, _ = data_utils.initialize_vocabulary(startrek_from_vocab_path)
_, startrek_to_vocab = data_utils.initialize_vocabulary(startrek_to_vocab_path)
cornell_from_vocab_path = os.path.join(FLAGS.data_dir,
"cornell/vocab50000.from")
cornell_to_vocab_path = os.path.join(FLAGS.data_dir,
"cornell/vocab50000.to")
cornell_from_vocab, _ = data_utils.initialize_vocabulary(cornell_from_vocab_path)
_, cornell_to_vocab = data_utils.initialize_vocabulary(cornell_to_vocab_path)
return (startrek_model,cornell_model, startrek_from_vocab, startrek_to_vocab, cornell_from_vocab, cornell_to_vocab)
startrek_model,cornell_model, startrek_from_vocab, startrek_to_vocab, cornell_from_vocab, cornell_to_vocab = load_models(sess)
def get_response_from_model(sess,sentence):
pred_str = predict(sentence)
pred = int(pred_str)
response = ''
if pred==0:
print('Star Trek Predicted!')
with tf.variable_scope("startrek"):
response = decode(sess,startrek_model,startrek_from_vocab,startrek_to_vocab,sentence)
if response == ".":
return random.choice(klingon_wordslist)
return response
else:
print('Generic Domain Predicted!')
with tf.variable_scope("cornell"):
response = decode(sess,cornell_model, cornell_from_vocab, cornell_to_vocab,sentence)
if response == ".":
return random.choice(klingon_wordslist)
line = response.replace('-','').replace(' \' ','\'').replace(' \" ', '\"')
#print ("STARTING WG")
try:
line = str(line).strip(" .")
line = line.replace(" ' ","'")
tokens = nltk.pos_tag([word.strip(string.punctuation) for word in line.split()])
tokens.insert(0, ('XSTARTX', 'X'))
tokens.insert(len(tokens), ('XENDX', 'X'))
new_reply = generate_new(tokens, line)
except:
print ("EXCEPT")
e = sys.exc_info()[0]
print("<p>Error: %s</p>" % e)
new_reply = random.choice(klingon_wordslist) #TODO: SELECT FROM LIST (Klingon)
return new_reply
# Response when alexa skill is launched
@ask.launch
def launch():
print ("i am here")
stream_url = 'https://s3.amazonaws.com/cis-700-7/Star+Trek+Original+Series+Intro+(HQ)+(mp3cut.net).mp3'
return audio().play(stream_url)
@ask.intent('AMAZON.StopIntent')
def stop():
return audio('stopping').clear_queue(stop=True)
@ask.intent('AMAZON.PauseIntent')
def pause():
return audio('Paused the stream.').stop()
@ask.intent('AMAZON.ResumeIntent')
def resume():
return audio('Resuming.').resume()
# Response to any utterance to the bot (Runs the decodder of the deep neural net to get the response)
@ask.intent("ChatIntent", convert = {"Text" : str})
def ask_intent(Text,startrek_model,cornell_model, startrek_from_vocab, startrek_to_vocab, cornell_from_vocab, cornell_to_vocab):
Text = Text.lower()
if not Text.endswith('.'):
Text += '.'
print ("INPUT: " + Text)
response = get_response_from_model(sess,Text)
print ("RESPONSE" + response)
return question(response)
if __name__ == '__main__':
app.run(debug=True,use_reloader=False)