-
Notifications
You must be signed in to change notification settings - Fork 53
/
glvis_driver.py
186 lines (169 loc) · 7.22 KB
/
glvis_driver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright (c) 2010-2024, Lawrence Livermore National Security, LLC. Produced
# at the Lawrence Livermore National Laboratory. All Rights reserved. See files
# LICENSE and NOTICE for details. LLNL-CODE-443271.
#
# This file is part of the GLVis visualization tool and library. For more
# information and source code availability see https://glvis.org.
#
# GLVis is free software; you can redistribute it and/or modify it under the
# terms of the BSD-3 license. We welcome feedback and contributions, see file
# CONTRIBUTING.md for details.
import argparse
import sys
import os
import numpy as np
from base64 import b64encode
from skimage.io import imread, imsave
from skimage.metrics import structural_similarity
from skimage.color import rgb2gray, gray2rgb
from plotly.subplots import make_subplots
import plotly.graph_objects as go
def compare_images(
baseline_file: str,
output_file: str,
expect_fail: bool = False,
CUTOFF_SSIM: float = 0.999
) -> bool:
# Try to open output image
output_img = imread(output_file)
if output_img is None:
print("[FAIL] Could not open output image.")
return False
# Try to open baseline image
baseline_img = imread(baseline_file)
if baseline_img is None:
print("[IGNORE] No baseline exists to compare against.")
return True
# Compare images with SSIM metrics. For two exactly-equal images, SSIM=1.0.
# We set a cutoff of 0.999 to account for possible differences in rendering.
ssim = structural_similarity(baseline_img, output_img, channel_axis=2)
if ssim < CUTOFF_SSIM:
if expect_fail:
print("[PASS] Differences were detected in the control case.")
else:
print("[FAIL] Output and baseline are different.")
else:
if expect_fail:
print("[FAIL] Differences were not detected in the control case.")
else:
print("[PASS] Images match.")
print(f" actual ssim = {ssim}, cutoff = {CUTOFF_SSIM}")
return ssim >= CUTOFF_SSIM if not expect_fail else ssim < CUTOFF_SSIM
def color_distance(I1: np.array, I2: np.array) -> dict[str, np.array]:
"""
L2-norm in rgb space. There are better ways but this is probably good enough.
"""
NORM_CONSTANT = (3*(255**2))**0.5 # max distance
l2norm = lambda x: np.linalg.norm(x, ord=2, axis=2)
delta = l2norm(I2.astype(int)-I1.astype(int)) / NORM_CONSTANT # output is NxM [0,1]
# now we scale to [0,255] and cast as uint8 so it is a "proper" image
Idiff_abs = (delta * 255).astype(np.uint8)
# get relative version
Idiff_rel = (Idiff_abs / Idiff_abs.max() * 255).astype(np.uint8)
return {'abs': Idiff_abs,
'rel': Idiff_rel,}
def generate_image_diffs(
image1_filename: str,
image2_filename: str,
absdiff_filename: str,
reldiff_filename: str,
) -> None:
# Images are read as NxMx3 [uint8] arrays from [0,255]
I1 = imread(image1_filename)
I2 = imread(image2_filename)
# Get the image diffs (abs and rel)
Idiffs = color_distance(I1, I2) # output is NxM [0,1]
# Save 3-channel image to file
imsave(absdiff_filename, gray2rgb(Idiffs['abs']))
imsave(reldiff_filename, gray2rgb(Idiffs['rel']))
# For the source= argument in plotly
def _get_image_src(filename):
with open(filename, "rb") as f:
image_bytes = b64encode(f.read()).decode()
return f"data:image/png;base64,{image_bytes}"
def image_comparison_plot(
image_filenames: list[str],
image_names: list[str], # for subtitles
output_filename: str,
):
"""
Illustrate results as an interactive plotly figure (html)
"""
assert len(image_filenames) == len(image_names)
n = len(image_filenames)
fig = make_subplots(rows=1, cols=n,
shared_xaxes=True,
shared_yaxes=True,
subplot_titles=image_names)
for idx, filename in enumerate(image_filenames):
fig.add_trace(go.Image(source=_get_image_src(filename)), 1, idx+1)
fig.update_xaxes(matches='x', showticklabels=False, showgrid=False, zeroline=False)
fig.update_yaxes(matches='y', showticklabels=False, showgrid=False, zeroline=False)
fig.write_html(output_filename, include_plotlyjs='cdn')
def test_stream(
exec_path: str,
exec_args: str,
save_file: str,
baseline: str
) -> bool:
if exec_args is None:
exec_args = ""
print(f"Testing {save_file}...")
test_name = os.path.basename(save_file).replace(".saved", "") # e.g. "ex3"
output_dir = f"outputs/{test_name}"
os.makedirs(output_dir, exist_ok=True)
# Create new stream file with command to screenshot and close
stream_data = None
with open(save_file) as in_f:
stream_data = in_f.read()
output_name = f"{output_dir}/test.nominal.{test_name}.png"
output_name_fail = f"{output_dir}/test.zoom.{test_name}.png"
absdiff_name = f"{output_dir}/test.nominal.absdiff.{test_name}.png"
reldiff_name = f"{output_dir}/test.nominal.reldiff.{test_name}.png"
tmp_file = "test.saved"
with open(tmp_file, 'w') as out_f:
out_f.write(stream_data)
out_f.write("\nwindow_size 800 600")
out_f.write(f"\nscreenshot {output_name}")
# Zooming in should create some difference in the images
out_f.write("\nkeys *")
out_f.write(f"\nscreenshot {output_name_fail}")
out_f.write("\nkeys q")
# Run GLVis with modified stream file
cmd = f"{exec_path} {exec_args} -saved {tmp_file}"
print(f"Exec: {cmd}")
ret = os.system(cmd)
if ret != 0:
print(f"[FAIL] GLVis exited with error code {ret}.")
return False
if baseline:
baseline_name = f"{baseline}/test.{test_name}.saved.png"
test_baseline = compare_images(baseline_name, output_name)
generate_image_diffs(baseline_name, output_name, absdiff_name, reldiff_name)
# Generate an interactive html plot, only if the test fails
# if not test_baseline:
image_comparison_plot([baseline_name, output_name, reldiff_name],
["Baseline", "Test Output", "Normalized Diff"],
reldiff_name.replace(".png", ".html"))
test_control = compare_images(baseline_name, output_name_fail, expect_fail=True)
return (test_baseline and test_control)
else:
print("[IGNORE] No baseline exists to compare against.")
return True
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-s", "--save_stream", help="Path to a GLVis saved stream file.")
parser.add_argument("-e", "--exec_cmd", help="Path to the GLVis executable")
parser.add_argument("-a", "--exec_args", help="Arguments to pass to GLVis.")
parser.add_argument("-n", "--group_name", help="Name of the test group.")
parser.add_argument("-b", "--baseline", help="Path to test baseline.")
args = parser.parse_args()
# Make a directory for storing test outputs
os.makedirs("outputs", exist_ok=True)
# Run tests
if args.save_stream is not None:
result = test_stream(args.exec_cmd, args.exec_args, args.save_stream, args.baseline)
if not result:
sys.exit(1)
else:
raise Exception("--save_stream must be specified. test_cmd() is unused. Import from `test_cmd.py`")