-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
430 lines (336 loc) · 12.7 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import numpy as np
import torch
from mlalgorithms.deep_learning.deep_model import InferenceConfig, TrainingConfig
if torch.cuda.is_available():
DEVICE = 'cuda'
elif torch.backends.mps.is_available():
DEVICE = 'mps'
else:
DEVICE = 'cpu'
DEFAULT_TRAINING_CONFIG = TrainingConfig(device=DEVICE, batch_size=32)
DEFAULT_INFERENCE_CONFIG = InferenceConfig(device=DEVICE)
def load_dataset(load_function, return_pt = False, label_dtype=torch.int64, *args, **kwargs):
from sklearn.model_selection import train_test_split
X, Y = load_function(*args, **kwargs)
a, b, c, d = train_test_split(X, Y, test_size=0.01, random_state=0)
if return_pt:
return torch.Tensor(a), torch.Tensor(b), torch.tensor(c, dtype=label_dtype), torch.tensor(d, dtype=label_dtype)
return a, b, c, d
def load_regression_data(return_pt = False):
from sklearn.datasets import load_diabetes
return load_dataset(load_diabetes, return_pt=return_pt, return_X_y=True, label_dtype=torch.float64)
def load_classification_data(return_pt = False):
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
X, Y = load_iris(return_X_y=True)
a, b, c, d = train_test_split(X, Y, test_size=0.2, random_state=0)
if return_pt:
return torch.Tensor(a), torch.Tensor(b), torch.tensor(c, dtype=torch.int64), torch.tensor(d, dtype=torch.int64)
return a, b, c, d
def load_dimensionality_reduction_data():
from sklearn.datasets import load_digits
return load_digits(return_X_y=True)
def load_binary_classification_data():
from sklearn.model_selection import train_test_split
rng = np.random.RandomState(1)
X = rng.randint(5, size=(6, 100))
Y = np.array([1, 2, 3, 4, 4, 5])
return X, X[4:5], Y, Y[4:5]
def load_2_class_classification_data():
X_train = np.array([[5,6,1,3,7,4,10,1,2,0,5,3,1,4],[1,2,0,2,3,3,9,4,4,3,6,5,3,7]]).T
Y_train = np.array([0,0,0,0,0,0,0,1,1,1,1,1,1,1])
X_test = np.array([[2,3,3,3,2,4],[1,1,0,7,6,5]]).T
Y_test = np.array([0,0,0,1,1,1])
return X_train, X_test, Y_train, Y_test
def print_name(func):
def wrapper(*args, **kwargs):
print('=' * 100)
print(f"Executing function: {func.__name__}")
print('-' * 100)
return_value = func(*args, **kwargs)
print('=' * 100)
print()
return return_value
return wrapper
@print_name
def kmeans():
X_train = [
[1, 1],
[5, 0],
[2, 2],
[5.5, 0],
[-10, -5],
]
X_test = [
[1.5, 1.5],
[-15.0, 0.0]
]
from mlalgorithms.clustering.kmeans import KMeans
from sklearn.cluster import KMeans as KMeans2
clf = KMeans2(n_clusters=3, random_state=0, n_init='auto')
clf.fit(torch.tensor(X_train))
print('SKLEARN : ', clf.cluster_centers_)
kmeans = KMeans(3, 5)
kmeans.fit(torch.tensor(X_train))
print('MLALGORITHMS : ', kmeans.clusters_centroids)
@print_name
def dbscan():
from mlalgorithms.clustering.dbscan import DBSCAN
import matplotlib.pyplot as plt
from sklearn import datasets
n_samples = 500
seed = 30
X, _ = datasets.make_circles(
n_samples=n_samples,
factor=0.5,
noise=0.05,
random_state=seed
)
X = torch.tensor(X)
dbscan = DBSCAN(5, 0.2)
predictions = dbscan.predict(X)
colors = ['#377eb8' if p == 0 else '#ff7f00' for p in predictions]
plt.scatter(X[:, 0], X[:, 1], s=10, c=colors)
plt.show()
@print_name
def ridge_regression():
X = torch.Tensor([[0,0], [1, 1], [2, 2]])
Y = torch.Tensor([0, 1, 2])
# Custom implementation
from mlalgorithms.supervised.regression import RidgeRegression
from sklearn.linear_model import RidgeClassifier
clf = RidgeClassifier(alpha=0.5)
clf.fit(X, Y)
reg = RidgeRegression(regularization_coef=0.5)
reg.fit(X, Y)
print('EXPECTED \t: \t', Y)
print('SKLEARN \t: \t', clf.predict(X))
print('MLALGORITHMS \t: \t', reg.predict(X))
@print_name
def lasso_regression():
X = torch.Tensor([[0,0], [1, 1], [2, 2]])
Y = torch.Tensor([0, 1, 2])
from sklearn import linear_model
clf = linear_model.Lasso(alpha=0.1)
from mlalgorithms.supervised.regression import LassoRegression
mla = LassoRegression(regularization_coef=0.01, nb_epochs=500)
clf.fit(X, Y)
mla.fit(X, Y)
print('EXPECTED \t: \t', Y)
print('SKLEARN \t: \t', clf.predict(X))
print('MLALGORITHMS \t: \t', mla.predict(X).squeeze())
@print_name
def logistic_regression():
X_train, X_test, Y_train, Y_test = load_2_class_classification_data()
print('EXPECTED \t: \t', Y_test)
from sklearn.linear_model import LogisticRegression as LR
clf = LR(penalty=None)
clf.fit(X_train, Y_train)
print('SKLEARN \t: \t', clf.predict(X_test))
from mlalgorithms.supervised.regression import LogisticRegression
mla = LogisticRegression()
mla.fit(torch.Tensor(X_train), torch.Tensor(Y_train))
print('MLALGORITHMS \t: \t', mla.predict(torch.Tensor(X_test)).squeeze())
@print_name
def naive_bayes():
X_train, X_test, Y_train, Y_test = load_classification_data()
print('EXPECTED \t: \t', Y_test)
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
y_pred = gnb.fit(X_train, Y_train).predict(X_test)
print('SKLEARN \t: \t', y_pred)
from mlalgorithms.supervised.naive_bayes import GaussianNaiveBayes
gnb2 = GaussianNaiveBayes()
y_pred_2 = gnb2.fit(torch.tensor(X_train), torch.tensor(Y_train)).predict(torch.tensor(X_test))
print('MLALGORITHMS \t: \t', y_pred_2)
@print_name
def bernoulli_naive_bayes():
X_train, X_test, Y_train, Y_test = load_binary_classification_data()
print('EXPECTED \t: \t', Y_test)
from sklearn.naive_bayes import BernoulliNB
clf = BernoulliNB()
clf.fit(X_train, Y_train)
print('SKLEARN \t: \t', clf.predict(X_test))
from mlalgorithms.supervised.naive_bayes import BernoulliNaiveBayes
bnb = BernoulliNaiveBayes()
bnb.fit(torch.tensor(X_train), torch.tensor(Y_train))
print('MLALGORITHMS \t: \t', bnb.predict(torch.tensor(X_test, dtype=torch.float32)))
@print_name
def multinomial_naive_bayes():
X_train, X_test, Y_train, Y_test = load_classification_data()
print('EXPECTED \t: \t', Y_test)
from sklearn.naive_bayes import MultinomialNB
from mlalgorithms.supervised.naive_bayes import MultinomialNaiveBayes
clf = MultinomialNB()
clf.fit(X_train, Y_train)
print('SKLEARN \t: \t', clf.predict(X_test))
bnb = MultinomialNaiveBayes(alpha_smoothing=1.0)
bnb.fit(torch.tensor(X_train), torch.tensor(Y_train))
print('MLALGORITHMS \t: \t', bnb.predict(torch.tensor(X_test, dtype=torch.float32)))
@print_name
def pca():
import matplotlib.pyplot as plt
X, Y = load_dimensionality_reduction_data()
from mlalgorithms.dimensionality_reduction.pca import PCA
pca = PCA(nb_dims=2)
res = pca.predict(torch.Tensor(X))
plt.scatter(res[:, 0], res[:, 1], s=20, c=Y)
plt.show()
@print_name
def tSNE():
from mlalgorithms.dimensionality_reduction.t_sne import tSNE
import matplotlib.pyplot as plt
X, Y = load_dimensionality_reduction_data()
t_sne = tSNE(nb_dims=2, lr=200, perplexity=40)
res = t_sne.predict(torch.Tensor(X))
plt.scatter(res[:, 0], res[:, 1], s=20, c=Y)
plt.show()
@print_name
def nn():
torch.random.manual_seed(42)
X_train, X_test, Y_train, Y_test = load_classification_data(return_pt=True)
Y_train = torch.nn.functional.one_hot(Y_train).type(dtype=torch.float32)
from mlalgorithms.deep_learning.neural_network import NeuralNetwork
from mlalgorithms.deep_learning.deep_model import TrainingConfig
from torch.optim import Adam
import torch.nn as nn
network = NeuralNetwork(4, 3, hidden_sizes=[3], hidden_activations=['relu'])
training_config = TrainingConfig(batch_size=256, device='mps', epochs=500)
training_config.optimizer = Adam
training_config.loss_function = nn.CrossEntropyLoss
network.fit(X_train, Y_train, training_config)
results = network.predict(X_test, training_config)
results = torch.argmax(results, dim=1).detach().cpu()
print(f'Accuracy : {100.0 * (results == Y_test.detach().cpu()).sum(dim=0) / len(Y_test)} %')
@print_name
def linear_layer():
X_train, X_test, Y_train, Y_test = load_regression_data()
from sklearn.linear_model import LinearRegression
clf = LinearRegression()
clf.fit(X_train, Y_train)
from mlalgorithms.deep_learning.layers.linear import Linear
from torch.optim import Adam
from mlalgorithms.metrics import RMSE
import torch.nn as nn
linear = Linear(X_train.shape[-1], 1, bias=True)
config = DEFAULT_TRAINING_CONFIG
config.batch_size = 256
config.optimizer = Adam
config.loss_function = nn.L1Loss
config.lr = 1.0
config.epochs = 200
linear.fit(
X=torch.tensor(X_train, dtype=torch.float32),
Y=torch.tensor(Y_train, dtype=torch.float32).unsqueeze(-1),
config=config
)
linear_pred = linear.predict(torch.tensor(X_test, dtype=torch.float32), config=DEFAULT_INFERENCE_CONFIG).squeeze()
sklearn_pred = torch.tensor(clf.predict(X_test), dtype=torch.float32).to(DEVICE)
expected_pred = torch.tensor(Y_test, dtype=torch.float32).to(DEVICE)
error = RMSE()
print('SKLEARN ERROR \t: \t', error(sklearn_pred, expected_pred).detach())
print('MLALGORITHMS ERROR \t: \t', error(linear_pred, expected_pred).detach())
@print_name
def batch_normalization():
import torch
import torch.nn as nn
import torch.nn.functional as F
from mlalgorithms.deep_learning.layers.normalization import BatchNormalization
X_1d = torch.Tensor([
[[1, 3, 2],
[1, 2, 3]],
[[3, 3, 2],
[2, 4, 4]],
[[4, 2, 2],
[1, 2, 4]],
[[3, 3, 2],
[3, 3, 2]]
])
X_2d = torch.Tensor([
[[[1], [3], [2]],
[[1], [2], [3]]],
[[[3], [3], [2]],
[[2], [4], [4]]],
[[[4], [2], [2]],
[[1], [2], [4]]],
[[[3], [3], [2]],
[[3], [3], [2]]]
])
norm_1d = nn.BatchNorm1d(2, momentum=1.0)
Y_1d = norm_1d(X_1d)
print('EXPECTED 1D : ', Y_1d)
bn = BatchNormalization(channel_dimension=1, channel_size=2)
print('MLALGORITHMS 1D : ', bn.predict(X_1d))
norm_2d = nn.BatchNorm2d(2, momentum=1.0)
Y_2d = norm_2d(X_2d)
print('EXPECTED 2D : ', Y_2d)
bn = BatchNormalization(channel_dimension=1, channel_size=2)
print('MLALGORITHMS 2D : ', bn.predict(X_2d))
@print_name
def layer_normalization():
import torch
import torch.nn as nn
import torch.nn.functional as F
from mlalgorithms.deep_learning.layers.normalization import LayerNormalization
X = torch.Tensor([
[[[1], [3], [2]],
[[1], [2], [3]]],
[[[3], [3], [2]],
[[2], [4], [4]]],
[[[4], [2], [2]],
[[1], [2], [4]]],
[[[3], [3], [2]],
[[3], [3], [2]]]
])
norm = nn.LayerNorm((3, 1))
Y = norm(X)
print('EXPECTED : ', Y)
ln = LayerNormalization((3, 1))
print('MLALGORITHMS : ', ln.predict(X))
@print_name
def decision_tree_classifier():
X_train, X_test, Y_train, Y_test = load_classification_data()
print('EXPECTED \t: \t', Y_test)
from sklearn.tree import DecisionTreeClassifier as dtc
clf = dtc(random_state=0)
clf.fit(X_train, Y_train)
print(clf.get_depth())
print('SKLEARN \t: \t', clf.predict(X_test))
from mlalgorithms.supervised.decision_tree import DecisionTreeClassifier
mla = DecisionTreeClassifier()
mla.fit(torch.Tensor(X_train), torch.LongTensor(Y_train))
print('MLALGORITHMS \t: \t', mla.predict(torch.Tensor(X_test)).squeeze())
print(mla.get_depth())
@print_name
def decision_tree_regressor():
X_train, X_test, Y_train, Y_test = load_regression_data()
print(Y_train.dtype)
print('EXPECTED \t: \t', Y_test)
from sklearn.tree import DecisionTreeRegressor as dtr
clf = dtr(random_state=0)
clf.fit(X_train, Y_train)
print(clf.get_depth())
print('SKLEARN \t: \t', clf.predict(X_test))
from mlalgorithms.supervised.decision_tree import DecisionTreeRegressor
mla = DecisionTreeRegressor()
mla.fit(torch.Tensor(X_train), torch.FloatTensor(Y_train))
print('MLALGORITHMS \t: \t', mla.predict(torch.Tensor(X_test)).squeeze())
print(mla.get_depth())
if __name__ == "__main__":
# kmeans()
# dbscan()
# naive_bayes()
# bernoulli_naive_bayes()
# multinomial_naive_bayes()
# ridge_regression()
# lasso_regression()
# logistic_regression()
# pca()
# tSNE()
# decision_tree_classifier()
decision_tree_regressor()
# linear_layer()
# nn()
# batch_normalization()
# layer_normalization()
pass