-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknn_classifier.py
97 lines (74 loc) · 2.81 KB
/
knn_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import pickle
import cv2
import os
import argparse
import imutils
from imutils import contours
import numpy as np
from imutils import paths
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from PIL import Image
"""
Run the KNN model and then test ID to see if it can guess
"""
def image_to_feature_vector(image, size=(32, 32)):
return cv2.resize(image, size).flatten()
def extract_color_histogram(image, bins=(8, 8, 8)):
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
hist = cv2.calcHist([hsv], [0, 1, 2], None, bins,
[0, 180, 0, 256, 0, 256])
if imutils.is_cv2():
hist = cv2.normalize(hist)
else:
cv2.normalize(hist, hist)
return hist.flatten()
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--dataset", required=True, help="path to input dataset")
ap.add_argument("-k", "--neighbors", type=int, default=1,
help="# of nearest neighbors for classification")
ap.add_argument("-j", "--jobs", type=int, default=-1,
help="# of jobs for k_nn distance (-1 uses all available cores)")
args = vars(ap.parse_args())
print("describing images...")
imagePaths = list(paths.list_images(args["dataset"]))
rawImages = []
features = []
labels = []
for (i, imagePath) in enumerate(imagePaths):
image = cv2.imread(imagePath)
label = imagePath.split(os.path.sep)[-1].split(".")[0]
pixels = image_to_feature_vector(image)
hist = extract_color_histogram(image)
rawImages.append(pixels)
features.append(hist)
labels.append(label)
print("processed {}/{}".format(i, len(imagePaths)))
rawImages = np.array(rawImages)
features = np.array(features)
labels = np.array(labels)
print("pixels matrix: {:.2f}MB".format(rawImages.nbytes/(1024*1000.0)))
print("features matrix: {:.2f}MB".format(features.nbytes/(1024*1000.0)))
(trainRI, testRI, trainRL, testRL) = train_test_split(
rawImages, labels, test_size=0.25, random_state=42
)
(trainFeat, testFeat, trainLabels, testLabels) = train_test_split(
features, labels, test_size=0.25, random_state=42
)
print("evaluating histogram accuracy...")
model = KNeighborsClassifier(n_neighbors=args["neighbors"],
n_jobs=args["jobs"])
model.fit(trainFeat, trainLabels)
acc = model.score(testFeat, testLabels)
print("histogram accuracy: {:.2f}%".format(acc*100))
print("evaluating raw pixel accuracy...")
model = KNeighborsClassifier(n_neighbors=args["neighbors"],
n_jobs=args["jobs"])
model.fit(trainRI, trainRL)
acc = model.score(testRI, testRL)
print("raw pixel accuracy: {:.2f}%".format(acc * 100))
# test image
test_image = cv2.imread("test-image.jpeg")
test_vector = image_to_feature_vector(test_image)
test_vector = np.array(test_vector)
print(model.predict(test_vector.reshape(1, -1)))