forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
743 lines (649 loc) Β· 26.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import glob
import math
import os
import struct
from typing import Dict, Optional
import numpy as np
import paddle
import paddle.distributed as dist
import paddle.incubate.multiprocessing as mp
from paddle.distributed import fleet
from paddle.io import BatchSampler, DataLoader, DistributedBatchSampler
from sklearn.metrics import accuracy_score
from paddlenlp.datasets import InTokensIterableDataset
from paddlenlp.trainer import Trainer, TrainerCallback
from paddlenlp.trainer.trainer_utils import IterableDatasetShard, has_length
from paddlenlp.transformers import (
AutoTokenizer,
ChatGLMv2Tokenizer,
LlamaForCausalLMPipe,
PretrainedConfig,
)
from paddlenlp.transformers.tokenizer_utils import PretrainedTokenizer
from paddlenlp.utils.log import logger
def compute_metrics(eval_preds):
flattened_preds = np.array(eval_preds.predictions).flatten()
flattened_labels = np.array(eval_preds.label_ids).flatten()
filtered_preds = flattened_preds[flattened_labels != -100]
filtered_labels = flattened_labels[flattened_labels != -100]
accuracy = accuracy_score(y_true=filtered_labels, y_pred=filtered_preds)
return {
"accuracy": accuracy,
}
def get_prefix_tuning_params(model):
if model.base_model_prefix == "chatglm":
from paddlenlp.peft.prefix import chatglm_postprocess_past_key_value
num_attention_heads = model.config.num_attention_heads
num_hidden_layers = model.config.num_hidden_layers
hidden_size = model.config.hidden_size
postprocess_past_key_value = chatglm_postprocess_past_key_value
multi_query_group_num = None
elif model.base_model_prefix == "chatglm_v2":
from paddlenlp.peft.prefix import chatglm_postprocess_past_key_value
num_attention_heads = model.config.num_attention_heads
num_hidden_layers = model.config.num_layers
hidden_size = model.config.hidden_size
postprocess_past_key_value = chatglm_postprocess_past_key_value
multi_query_group_num = model.config.multi_query_group_num
elif model.base_model_prefix == "bloom":
from paddlenlp.peft.prefix import bloom_postprocess_past_key_value
num_attention_heads = model.config.num_attention_heads
num_hidden_layers = model.config.n_layer
hidden_size = model.config.n_embed
postprocess_past_key_value = bloom_postprocess_past_key_value
multi_query_group_num = None
elif model.base_model_prefix == "llama":
from paddlenlp.peft.prefix import llama_postprocess_past_key_value
num_attention_heads = model.config.n_head
num_hidden_layers = model.config.n_layer
hidden_size = model.config.hidden_size
postprocess_past_key_value = llama_postprocess_past_key_value
multi_query_group_num = None
elif model.base_model_prefix == "qwen":
from paddlenlp.peft.prefix import qwen_postprocess_past_key_value
num_attention_heads = model.config.num_attention_heads
num_hidden_layers = model.config.num_hidden_layers
hidden_size = model.config.hidden_size
postprocess_past_key_value = qwen_postprocess_past_key_value
multi_query_group_num = None
else:
raise ValueError(f"Unknown base_model_prefix: {model.base_model_prefix}. ")
return dict(
num_attention_heads=num_attention_heads,
num_hidden_layers=num_hidden_layers,
hidden_size=hidden_size,
postprocess_past_key_value=postprocess_past_key_value,
multi_query_group_num=multi_query_group_num,
)
def get_lora_target_modules(model):
# Not yet support RowParallelLinear
if model.base_model_prefix == "chatglm":
target_modules = [".*query_key_value.*", ".*dense.*", ".*dense_h_to_4h.*", ".*dense_4h_to_h.*"]
elif model.base_model_prefix == "chatglm_v2":
target_modules = [
".*query.*",
".*key.*",
".*value.*",
".*dense.*",
".*dense_h_to_4h.*",
".*dense_4h_to_h.*",
]
elif model.base_model_prefix == "bloom":
target_modules = [".*query_key_value.*", ".*dense.*", ".*dense_h_to_4h.*", ".*dense_4h_to_h.*"]
elif model.base_model_prefix == "llama" or isinstance(model, LlamaForCausalLMPipe):
target_modules = [
".*q_proj.*",
".*v_proj.*",
".*k_proj.*",
".*o_proj.*",
".*qkv_proj.*",
".*gate_proj.*",
".*down_proj.*",
".*up_proj.*",
".*gate_up_fused_proj.*",
]
elif model.base_model_prefix == "opt":
target_modules = [
".*project_in.*",
".*project_out.*",
".*q_proj.*",
".*k_proj.*",
".*v_proj.*",
".*qkv_proj.*",
".*out_proj.*",
".*linear1.*",
".*linear2.*",
]
elif model.base_model_prefix == "qwen":
target_modules = [
".*attn.c_attn.*",
".*attn.c_proj.*",
".*mlp.w1.*",
".*mlp.w2.*",
".*mlp.c_proj.*",
]
elif model.base_model_prefix == "mixtral":
target_modules = [
".*q_proj.*",
".*k_proj.*",
".*v_proj.*",
".*o_proj.*",
".*w1.*",
".*w2.*",
".*w3.*",
]
else:
raise ValueError(f"Unknown base_model_prefix: {model.base_model_prefix}.")
return target_modules
class InTokensIterDatasetCallback(TrainerCallback):
"""
A [`TrainerCallback`] that handles early stopping.
"""
def on_step_end(self, args, state, control, **kwargs):
train_dataloader = kwargs["train_dataloader"]
if isinstance(train_dataloader.dataset, InTokensIterableDataset):
dataset = train_dataloader.dataset
elif isinstance(train_dataloader.dataset, IterableDatasetShard) and isinstance(
train_dataloader.dataset.dataset, InTokensIterableDataset
):
dataset = train_dataloader.dataset.dataset
else:
raise ValueError(
"Unexpected dataset format: InTokensIterDatasetCallback expectes `paddlenlp.datasets.InTokensIterableDataset`"
)
if state.trial_params is None:
state.trial_params = {}
state.trial_params["intokens_global_step"] = dataset.intokens_global_step
class CausalLMTrainer(Trainer):
def __init__(self, do_generation: bool, gen_args, data_args, **kwargs):
super().__init__(**kwargs)
self.do_generation = do_generation
self.gen_args = gen_args
self.data_args = data_args
def prediction_step(
self,
model,
inputs,
prediction_loss_only: bool,
ignore_keys=None,
):
if prediction_loss_only or self.args.pipeline_parallel_degree > 1:
return super().prediction_step(model, inputs, prediction_loss_only, ignore_keys)
elif not self.do_generation:
loss, logits, labels = super().prediction_step(model, inputs, prediction_loss_only, ignore_keys)
# argmax here to avoid gather all logits, which is too memory-consuming.
# keepdim in order to maintain the same shape as logits
if isinstance(logits, (list, tuple)):
logits = logits[0]
# all gather logits when enabling tensor_parallel_output
if self.args.tensor_parallel_degree > 1 and getattr(self.args, "tensor_parallel_output", False):
hcg = fleet.get_hybrid_communicate_group()
model_parallel_group = hcg.get_model_parallel_group()
gathered_logits = []
dist.all_gather(gathered_logits, logits, group=model_parallel_group)
logits = paddle.concat(gathered_logits, axis=-1)
return (loss, logits.argmax(axis=-1, keepdim=True), labels)
loss = None
model.eval()
with paddle.no_grad():
generated_tokens = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"] if "attention_mask" in inputs else None,
position_ids=inputs["position_ids"] if "position_ids" in inputs else None,
max_length=max(self.data_args.max_length - inputs["input_ids"].shape[-1], 1),
decode_strategy="sampling",
top_k=self.gen_args.top_k,
top_p=self.gen_args.top_p,
bos_token_id=self.tokenizer.bos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
use_cache=True,
)[0]
all_preds = []
for pred_tokens in generated_tokens:
pred_tokens = pred_tokens[pred_tokens != self.tokenizer.pad_token_id].tolist()
all_preds.append(pred_tokens)
max_pred_length = max([len(x) for x in all_preds])
for index, preds in enumerate(all_preds):
all_preds[index] = preds + [-100] * (max_pred_length - len(preds))
all_preds = paddle.to_tensor(all_preds)
if "labels" in inputs:
all_labels = paddle.to_tensor(inputs["labels"])
else:
all_labels = None
return (loss, all_preds, all_labels)
def log(self, logs: Dict[str, float], **kwargs) -> None:
if "loss" in logs:
logs["ppl"] = np.exp(logs["loss"])
if "eval_loss" in logs:
logs["eval_ppl"] = np.exp(logs["eval_loss"])
super(CausalLMTrainer, self).log(logs, **kwargs)
def get_ptq_dataloader(self, ptq_ds):
if self.args.world_size <= 1:
ptq_sampler = BatchSampler(
dataset=ptq_ds,
shuffle=True,
batch_size=self.args.per_device_train_batch_size,
drop_last=self.args.dataloader_drop_last,
)
else:
ptq_sampler = DistributedBatchSampler(
self.train_dataset,
batch_size=self.args.per_device_train_batch_size,
shuffle=True,
num_replicas=self.args.dataset_world_size,
rank=self.args.dataset_rank,
drop_last=self.args.dataloader_drop_last,
)
ptq_dataloader = DataLoader(
ptq_ds,
batch_sampler=ptq_sampler,
collate_fn=self.data_collator,
num_workers=self.args.dataloader_num_workers,
)
return ptq_dataloader
def ptq_loop(
self,
dataloader: DataLoader,
description: str,
max_eval_iters: Optional[int] = -1,
):
if isinstance(dataloader, paddle.io.DataLoader):
batch_size = dataloader.batch_sampler.batch_size
else:
raise ValueError("Only support for paddle.io.DataLoader")
if has_length(dataloader):
logger.info(f" Num examples = {self.num_examples(dataloader)}")
if max_eval_iters > 0:
logger.info(f" Total {description} steps = {max_eval_iters}")
else:
logger.info(f" Total {description} steps = {len(dataloader)}")
else:
logger.info(" Num examples: Unknown")
if max_eval_iters > 0:
logger.info(f" Total {description} steps = {max_eval_iters}")
logger.info(f" Pre device batch size = {batch_size}")
logger.info(f" Total Batch size = {batch_size * self.args.dataset_world_size}")
self.model.eval()
with paddle.no_grad():
for step, inputs in enumerate(dataloader):
self.prediction_step(model=self.model, inputs=inputs, prediction_loss_only=True, ignore_keys=None)
if max_eval_iters > 0 and step >= max_eval_iters - 1:
break
def get_infer_model_path(input_dir, model_prefix):
if dist.get_world_size() > 1:
local_rank = dist.get_rank()
return os.path.join(input_dir, "rank_{}".format(local_rank), model_prefix)
else:
return os.path.join(input_dir, model_prefix)
def generate_rank_mapping(output_filename):
ring_id = -1
try:
hcg = fleet.get_hybrid_communicate_group()
model_parallel_group = hcg.get_model_parallel_group()
ring_id = model_parallel_group.id
except Exception:
pass
if ring_id == -1:
return
world_size = dist.get_world_size()
with open(output_filename, "w") as f:
f.write("[ring_id -> ranks]\n")
f.write(",".join(map(str, [0] + list(range(world_size)))) + "\n")
f.write(",".join(map(str, [ring_id] + list(range(world_size)))) + "\n")
f.write("[rank -> ring_ids]\n")
for i in range(world_size):
f.write("{},0,{}\n".format(i, ring_id))
def deserialize_from_file(fp):
x_type = fp.read(1)
x_type_out = struct.unpack("c", x_type)[0]
# data
data_list = []
if x_type_out == b"0":
data = fp.read(4)
data_out = struct.unpack("f", data)[0]
while data:
data_out = struct.unpack("f", data)[0]
data_list.append(data_out)
data = fp.read(4)
elif x_type_out == b"1":
data = fp.read(8)
while data:
data_out = struct.unpack("l", data)[0]
data_list.append(data_out)
data = fp.read(8)
elif x_type_out == b"2":
data = fp.read(4)
while data:
data_out = struct.unpack("i", data)[0]
data_list.append(data_out)
data = fp.read(4)
else:
print("type error")
data_arr = np.array(data_list)
return data_arr
def get_alibi_slopes(num_heads):
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
base = 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3)))
powers = np.arange(1, 1 + closest_power_of_2)
slopes = np.power(base, powers)
if closest_power_of_2 != num_heads:
extra_base = 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3)))
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
extra_powers = np.arange(1, 1 + 2 * num_remaining_heads, 2)
slopes = np.concatante([slopes, np.power(extra_base, extra_powers)], axis=0)
return slopes.astype("float32")
def pad_batch_data(insts, pad_id=0, return_seq_len=False, pad_style="right"):
"""Pad sequences to the max sequence length in batch."""
max_len = max(map(len, insts))
if pad_style == "left":
inst_data = np.array([[pad_id] * (max_len - len(inst)) + list(inst) for inst in insts])
else:
inst_data = np.array([list(inst) + [pad_id] * (max_len - len(inst)) for inst in insts])
if return_seq_len:
seq_len = np.array([len(inst) for inst in insts])
return inst_data.astype("int64").reshape([-1, max_len]), seq_len
else:
return inst_data.astype("int64").reshape([-1, max_len])
def dybatch_preprocess(
tokenizer,
texts: list[str],
src_length: int,
max_length: int,
architectures: str,
top_p: float,
temperature: float,
eos_token_id: int | list[list[int]],
pre_caches_length: int = 0,
benchmark: bool = False,
):
"""Pre-process generation inputs."""
inputs = {}
if "chatglmforcausallm" == architectures.lower():
input_ids = []
position_ids = []
for text in texts:
tokens = tokenizer(
text,
return_tensors="np",
padding=True,
max_length=src_length,
# if use chat_template, it will not add special_tokens
add_special_tokens=tokenizer.chat_template is None or isinstance(tokenizer, ChatGLMv2Tokenizer),
)
input_ids.append(tokens["input_ids"][0])
position_ids.append(tokens["position_ids"][0])
pad_token_id = tokenizer([tokenizer.pad_token], return_tensors="np")["input_ids"][0][0]
inputs["input_ids"], seq_len = pad_batch_data(input_ids, pad_id=pad_token_id, return_seq_len=True)
bs = inputs["input_ids"].shape[0]
max_len = max(map(len, input_ids))
inst_data_pos = []
for i in range(len(position_ids)):
inst_data_pos.append(np.array([list(inst) + [0] * (max_len - len(inst)) for inst in position_ids[i]]))
inputs["position_ids"] = paddle.to_tensor(np.array(inst_data_pos))
elif "gpt" in architectures:
input_ids = []
if isinstance(texts, str):
texts = [texts]
for text in texts:
tokens = tokenizer(
text,
return_tensors="np",
padding=False,
max_length=src_length,
return_attention_mask=False,
return_token_type_ids=False,
)
input_ids.append(tokens["input_ids"][0])
pad_token_id = tokenizer([tokenizer.pad_token], return_tensors="np")["input_ids"][0][-1]
inputs["input_ids"], seq_len = pad_batch_data(input_ids, pad_id=pad_token_id, return_seq_len=True)
bs = inputs["input_ids"].shape[0]
max_len = max(map(len, input_ids))
position_ids = paddle.arange(sum(seq_len), dtype="int64")
pre_len = seq_len[0]
for length in seq_len[1:]:
position_ids[pre_len : length + pre_len] = position_ids[pre_len : length + pre_len] - pre_len
pre_len += length
inputs["position_ids"] = position_ids
else:
input_ids = []
if isinstance(texts, str):
texts = [texts]
for text in texts:
tokens = tokenizer(
text,
return_tensors="np",
padding=False,
max_length=src_length,
return_attention_mask=False,
return_token_type_ids=False,
add_special_tokens=tokenizer.chat_template is None or isinstance(tokenizer, ChatGLMv2Tokenizer),
)
input_ids.append(tokens["input_ids"][0])
pad_token_id = tokenizer([tokenizer.pad_token], return_tensors="np")["input_ids"][0][-1]
inputs["input_ids"], seq_len = pad_batch_data(input_ids, pad_id=pad_token_id, return_seq_len=True)
bs = inputs["input_ids"].shape[0]
max_len = max(map(len, input_ids))
position_ids = paddle.zeros(shape=[bs, max_length + src_length], dtype="int64")
for i in range(bs):
position_ids[i, pre_caches_length : pre_caches_length + seq_len[i]] = paddle.arange(seq_len[i])
inputs["position_ids"] = position_ids
tgt_ids = [input[-1:] for input in input_ids]
tgt_pos = []
for i, valid_len in enumerate(map(len, input_ids)):
tgt_pos.append(valid_len - 1)
step_idx = [
0,
] * bs
tgt_pos = np.array(tgt_pos).astype("int64")
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
inputs["eos_token_id"] = np.array(eos_token_id * bs).reshape(-1, 1).astype("int64")
inputs["top_p"] = (
np.array(
[
top_p,
]
* bs
)
.reshape(-1, 1)
.astype("float32")
)
inputs["temperature"] = (
np.array(
[
temperature,
]
* bs
)
.reshape(-1, 1)
.astype("float32")
)
inputs["seq_len_encoder"] = seq_len.astype("int32").reshape(-1, 1)
inputs["seq_len_decoder"] = (seq_len + pre_caches_length).astype("int32").reshape(-1, 1)
inputs["step_idx"] = np.array(step_idx).astype("int64").reshape(-1, 1)
inputs["tgt_ids"] = np.array(tgt_ids).astype("int64").reshape(-1, 1)
inputs["tgt_pos"] = tgt_pos.reshape(-1, 1)
inputs["max_length"] = np.array(max_length - pre_caches_length).astype("int64").reshape((-1, 1))
inputs["min_length"] = (
np.array(
[
1
if not benchmark
else max_length
- pre_caches_length, # Note(Zhengzekang): When in benchmark mode, we need to set a fixed decode length.
]
* bs
)
.astype("int64")
.reshape((-1, 1))
)
inputs["penalty_score"] = (
np.array(
[
1.0,
]
* bs
)
.astype("float32")
.reshape((-1, 1))
)
inputs["frequency_score"] = (
np.array(
[
0.0,
]
* bs
)
.astype("float32")
.reshape((-1, 1))
)
inputs["presence_score"] = (
np.array(
[
0.0,
]
* bs
)
.astype("float32")
.reshape((-1, 1))
)
inputs["stop_flags"] = (
np.array(
[
0,
]
* bs
)
.astype("bool")
.reshape((-1, 1))
)
inputs["stop_nums"] = np.array([bs]).astype("int64")
return inputs
def load_real_time_tokens():
tokens = []
files = glob.glob(os.path.join("./real_time_save.*"))
for j in range(1, len(files) + 1):
filename = "./real_time_save.temp_ids_rank_0_step_{}".format(j)
if not os.path.exists(filename):
break
fp = open(filename, "rb+")
fp.read(1)
data_list = deserialize_from_file(fp)
fp.close()
tokens.append(np.array(data_list).reshape(-1, 1))
os.system("rm -f ./real_time_save.temp_ids_rank_*")
tokens = np.concatenate(tokens, axis=1)
return tokens
def init_chat_template(
tokenizer: PretrainedTokenizer, model_name_or_path: str, chat_template_file: Optional[str] = None
):
"""init chat template for the given tokenizer.
If is None, it will not use `chat_template.json`;
If is equal with `model_name_or_path`, it will use the default loading;
If is directory, it will find the `chat_template.json` under the directory;
If is file, it will load it.
Args:
tokenizer (PretrainedTokenizer): the instance of tokenizer
model_name_or_path (str): _description_
chat_template_file (Optional[str], optional): _description_. Defaults to None.
"""
# 1. use the default chat_template file
if chat_template_file is None:
return
if str(chat_template_file).lower() == "none":
# delete the chat_template from tokenizer if not use chat_template.
# why do this: it will load the `chat_template.json` file by default
tokenizer.chat_template = None
return
# it will load the `chat_template.json` file by default, so do nothing
if chat_template_file == model_name_or_path:
if tokenizer.chat_template is None:
logger.warning(f"there is not `chat_template.json` file in the `{model_name_or_path}`")
return
if os.path.isdir(chat_template_file):
local_chat_template_file_path = os.path.join(chat_template_file, "chat_template.json")
if os.path.exists(local_chat_template_file_path):
chat_template_file = local_chat_template_file_path
else:
logger.warning(f"there is not `chat_template.json` file in the `{model_name_or_path}`")
return
if not os.path.exists(chat_template_file):
logger.warning(f"there is not `chat_template.json` file from path<`{model_name_or_path}`>")
return
logger.info(f"loading `chat_template.json` from `{chat_template_file}`")
tokenizer.init_chat_template(chat_template_file)
def get_model_max_position_embeddings(config: PretrainedConfig) -> Optional[int]:
names = [
"max_position_embeddings", # most of models
"max_sequence_length", # GLM model
"seq_length", # llama model
]
for name in names:
max_length = config.get(name, None)
if max_length is not None:
return max_length
return None
def get_default_max_decoding_length(config: PretrainedConfig, default: int = 1024) -> int:
"""get the default max decoding length from config.
Args:
config (PretrainedConfig): the instance of PretrainedConfig
default (int): the default value of max decoding length
Returns:
int: the default max_length of decoding length
"""
max_position_embeddings = get_model_max_position_embeddings(config)
if max_position_embeddings is None:
return default
return max_position_embeddings // 4
def get_default_max_encoding_length(config: PretrainedConfig, default: int = 1024) -> int:
"""get the default max encoding length from config.
Args:
config (PretrainedConfig): the instance of PretrainedConfig
default (int): the default value of max encoding length
Returns:
int: the default max_length of encoding length
"""
max_position_embeddings = get_model_max_position_embeddings(config)
if max_position_embeddings is None:
return default
return max_position_embeddings // 4 * 3
def read_res(model_name_or_path: str, tensor_queue: mp.Queue, result_queue: mp.Queue):
tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path,
)
paddle.device.set_device("cpu")
outputs = []
output_tensor = tensor_queue.get(timeout=1)
logger.info("Start read result message")
logger.info(f"Current path is {os.getcwd()}")
from paddlenlp_ops import get_output
while True:
get_output(output_tensor, 0, True)
if output_tensor[0, 0] == -2: # read none
continue
bsz = output_tensor[1, 0].numpy()
output_numpy = output_tensor[2 : bsz + 2].numpy()
output_numpy[output_numpy == -1] = 2
outputs.append(output_numpy)
if output_tensor[0, 0] == -1:
break
output = np.concatenate(outputs, axis=1).tolist()
seqs = tokenizer.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=False)
for i, seq in enumerate(seqs):
result_queue.put([i, seq])
logger.info("Finish read result message")