-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation.nb
1978 lines (1920 loc) · 89.2 KB
/
simulation.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 9.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 91146, 1969]
NotebookOptionsPosition[ 88930, 1895]
NotebookOutlinePosition[ 89268, 1910]
CellTagsIndexPosition[ 89225, 1907]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[" "], "Input",
CellChangeTimes->{3.573765829714208*^9}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"\[Epsilon]", "=",
FractionBox["625000",
RowBox[{"22468879468420441", "\[Pi]"}]]}], "\n",
RowBox[{"\[EBar]", "=",
RowBox[{
RowBox[{"-", "1.602177"}], "\[Times]",
RowBox[{"10", "^",
RowBox[{"-", "19"}]}]}]}], "\n",
RowBox[{"c", "=", "299792458"}], "\n",
RowBox[{"particlenumber", "=",
RowBox[{"10", "^", "3"}]}], "\n",
RowBox[{"duration", "=",
RowBox[{"10", "^",
RowBox[{"-", "8"}]}]}], "\n",
RowBox[{"timestep", "=",
RowBox[{"10", "^",
RowBox[{"-", "10"}]}]}], "\n",
RowBox[{"rmax", "=",
RowBox[{"1.5", "*",
RowBox[{"10", "^",
RowBox[{"-", "2"}]}]}]}], "\n",
RowBox[{"delay", "=",
RowBox[{
RowBox[{"rmax", "/", "c"}], "*", "0.1"}]}], "\n",
RowBox[{
RowBox[{"\[Gamma]", "[", "v_", "]"}], "=",
FractionBox["1",
SqrtBox[
RowBox[{"1", "-",
FractionBox[
SuperscriptBox["v", "2"],
SuperscriptBox["c", "2"]]}]]]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Gamma]\.b2", "[", "v_", "]"}], "=",
FractionBox["1",
RowBox[{"1", "-",
FractionBox[
SuperscriptBox["v", "2"],
SuperscriptBox["c", "2"]]}]]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"electricalForce", "=",
RowBox[{"-",
FractionBox["1",
RowBox[{"4", "\[Pi]", "\[Epsilon]"}]]}]}], ";"}], "\n",
RowBox[{"maxcharge", "=", "7000"}], "\n",
RowBox[{
RowBox[{"elecScalForce", "[",
RowBox[{"Q_", ",", "q_", ",", "r_Vector"}], "]"}], "=",
FractionBox["Qq",
SuperscriptBox[
RowBox[{"Norm", "[", "r", "]"}], "2"]]}], "\n",
RowBox[{
RowBox[{"elecVecForce", "[",
RowBox[{"Q_", ",", "q_", ",", "r_Vector"}], "]"}], "=",
RowBox[{
FractionBox["Qq",
SuperscriptBox[
RowBox[{"Norm", "[", "r", "]"}], "3"]], "*",
"r"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"elecVecFieldFunc", "[",
RowBox[{"q_", ",", "r_Vector", ",", "t_"}], "]"}], "=",
RowBox[{"Function", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"affectedRadius", "=",
RowBox[{"rmax", "-",
RowBox[{"c", "*", "t"}]}]}], ";",
RowBox[{"fullyaffected", "=",
RowBox[{"affectedRadius", "+",
RowBox[{"delay", "*", "c"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"distance", "=",
RowBox[{"Norm", "[", "r", "]"}]}], ";",
RowBox[{
FractionBox[
RowBox[{"r", "*", "q"}],
SuperscriptBox["distance", "3"]], "*",
RowBox[{"If", "[",
RowBox[{
RowBox[{"distance", "\[GreaterEqual]",
RowBox[{"Min", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Abs", "[", "fullyaffected", "]"}], ",",
RowBox[{"Abs", "[", "affectedRadius", "]"}]}], "}"}], "]"}]}],
",",
RowBox[{"If", "[",
RowBox[{
RowBox[{"distance", "\[GreaterEqual]",
RowBox[{"Max", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Abs", "[", "fullyaffected", "]"}], ",",
RowBox[{"Abs", "[", "affectedRadius", "]"}]}], "}"}], "]"}]}],
",", "maxcharge", ",",
RowBox[{"maxcharge",
FractionBox["1", "2"],
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["1",
RowBox[{"delay", "c"}]], "\[Pi]",
RowBox[{"(",
RowBox[{"Abs", "[",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"affectedRadius", "<", "0"}], "&&",
RowBox[{"distance", "<",
RowBox[{"Abs", "[", "affectedRadius", "]"}]}]}], ",",
RowBox[{"distance", "+", "affectedRadius"}], ",",
RowBox[{"fullyaffected", "-", "distance"}]}], "]"}], "]"}],
")"}]}], "]"}]}], ")"}]}]}], "]"}], ",",
RowBox[{"If", "[",
RowBox[{
RowBox[{"affectedRadius", "<", "distance", "<", "fullyaffected"}],
",",
RowBox[{"maxcharge", "*",
FractionBox["1", "2"],
RowBox[{"(",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{
FractionBox[
RowBox[{"distance", "+", "affectedRadius"}],
RowBox[{"delay", "c"}]], "\[Pi]"}], "]"}], "+",
RowBox[{"Cos", "[",
RowBox[{
FractionBox[
RowBox[{"fullyaffected", "-", "distance"}],
RowBox[{"delay", "c"}]], "\[Pi]"}], "]"}]}], ")"}]}], ",",
"0"}], "]"}]}], "]"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"start", "=",
RowBox[{"Array", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"RandomReal", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "rmax"}], ",", "rmax"}], "}"}], "]"}], ",",
RowBox[{"RandomReal", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "rmax"}], ",", "rmax"}], "}"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"RandomReal", "[", "40000", "]"}], ",",
RowBox[{"RandomReal", "[", "40000", "]"}]}], "}"}]}], "}"}], "&"}],
",", "particlenumber"}], "]"}]}], ";"}], "\n",
RowBox[{
RowBox[{"save", "=",
RowBox[{"{",
RowBox[{"Select", "[",
RowBox[{"start", ",",
RowBox[{
RowBox[{
RowBox[{"Norm", "[",
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], "]"}], "\[LessEqual]", "rmax"}],
"&"}]}], "]"}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"acctualParticleNumber", "=",
RowBox[{"Length", "[",
RowBox[{"save", "[",
RowBox[{"[", "1", "]"}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Do", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"copy", "=",
RowBox[{"save", "[",
RowBox[{"[",
RowBox[{"-", "1"}], "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"Do", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"thistime", "=",
RowBox[{"copy", "[",
RowBox[{"[", "i", "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"particle", "=",
RowBox[{"thistime", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"particleVel", "=",
RowBox[{"thistime", "[",
RowBox[{"[", "2", "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"elecforcevec", "=",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], ";", "\[IndentingNewLine]",
RowBox[{"maxdist", "=",
RowBox[{
RowBox[{"Norm", "[", "particle", "]"}], "+", "rmax"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"flashback", "=", "1"}], ";", "\[IndentingNewLine]",
RowBox[{"eParVel", "=",
FractionBox["particleVel",
RowBox[{"Norm", "[", "particleVel", "]"}]]}], ";",
"\[IndentingNewLine]",
RowBox[{"tmpPos", "=",
RowBox[{"(",
RowBox[{"particle", "+",
FractionBox[
RowBox[{"particleVel", " ", "timestep"}], "2"]}], ")"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"own\[Gamma]", "=",
RowBox[{"\[Gamma]\.b2", "[", "particleVel", "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"While", "[",
RowBox[{
RowBox[{
RowBox[{"flashback", "*", "c", "*", "timestep"}], "<", "maxdist"}],
",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"scope", "=",
RowBox[{"If", "[",
RowBox[{
RowBox[{"flashback", "<", "2"}], ",",
RowBox[{"flashback", "+", "1"}], ",", "flashback"}], "]"}]}],
";", "\[IndentingNewLine]",
RowBox[{"scope", "=",
RowBox[{"If", "[",
RowBox[{
RowBox[{"scope", ">",
RowBox[{"Length", "[", "save", "]"}]}], ",",
RowBox[{"Length", "[", "save", "]"}], ",", "scope"}], "]"}]}],
";", "\[IndentingNewLine]",
RowBox[{"basis", "=",
RowBox[{"save", "[",
RowBox[{"[",
RowBox[{"-", "scope"}], "]"}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"selection", "=",
RowBox[{"Select", "[",
RowBox[{"basis", ",",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"flashback", "-", "1"}], ")"}], "timestep", "*",
"c"}], ")"}], "2"], "\[LessEqual]",
RowBox[{"SquaredEuclideanDistance", "[",
RowBox[{"particle", ",", "#1"}], "]"}], "\[LessEqual]",
SuperscriptBox[
RowBox[{"(",
RowBox[{"flashback", "*", "timestep", "*", "c"}], ")"}],
"2"]}], "&"}]}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"Do", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"test", "=",
RowBox[{"selection", "[",
RowBox[{"[", "n", "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"vel", "=",
RowBox[{"test", "[",
RowBox[{"[", "2", "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"pos", "=",
RowBox[{"test", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"eVel", "=",
FractionBox["vel",
RowBox[{"Norm", "[", "vel", "]"}]]}], ";",
"\[IndentingNewLine]",
RowBox[{"VecOfParField", "+=",
RowBox[{
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"tmpPos", "-", "pos"}], ")"}], "*", "eVel"}],
")"}], "2"], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"Norm", "[",
RowBox[{"(",
RowBox[{"tmpPos", "-", "pos"}], ")"}], "]"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"tmpPos", "-", "pos"}], ")"}], "*", "eVel"}]}],
")"}], "2"], "*",
RowBox[{"\[Gamma]\.b2", "[", "vel", "]"}]}]}], ")"}]}],
"*",
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"tmpPos", "-", "pos"}], ")"}], "*", "eParVel"}],
")"}], "2"], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"Norm", "[",
RowBox[{"(",
RowBox[{"tmpPos", "-", "pos"}], ")"}], "]"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"tmpPos", "-", "pos"}], ")"}], "*", "eParVel"}]}],
")"}], "2"], "*", "own\[Gamma]"}]}], ")"}]}], "*",
FractionBox[
RowBox[{"tmpPos", "-", "pos"}],
SuperscriptBox[
RowBox[{"Norm", "[",
RowBox[{"tmpPos", "-", "pos"}], "]"}], "3"]]}]}]}],
"\[IndentingNewLine]", ",",
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"Length", "[", "selection", "]"}]}], "}"}]}], "]"}],
";", "\[IndentingNewLine]",
RowBox[{"flashback", "++"}]}]}], "\[IndentingNewLine]", "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"charge", "=",
RowBox[{
RowBox[{"(",
RowBox[{"acctualParticleNumber", "-", "1"}], ")"}], "*",
"\[EBar]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"vecOfField", "=",
RowBox[{
RowBox[{"vecOfParField", "*", "\[EBar]", "*", "charge", "*",
FractionBox[
RowBox[{"tmpPos", "-", "pos"}],
SuperscriptBox[
RowBox[{"Norm", "[",
RowBox[{"tmpPos", "-", "pos"}], "]"}], "3"]]}], "+",
RowBox[{"elecVecFieldFunc", "[",
RowBox[{"\[EBar]", ",", "particle", ",",
RowBox[{"timestep", "*", "t"}]}], "]"}]}]}], ";",
"\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
"\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
"\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
"\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
"\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"acceleration", "=",
RowBox[{"elecforcevec", "*",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{
RowBox[{
RowBox[{"Abs", "[", "velocity", "]"}], "^", "2"}], "/",
RowBox[{"c", "^", "2"}]}]}], "]"}], "/", "mass"}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"velocity", "+=",
RowBox[{"acceleration", "*", "timestep"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"copy", "[",
RowBox[{"[", "i", "]"}], "]"}], "=",
RowBox[{"{",
RowBox[{
RowBox[{"tmppos", "+",
RowBox[{"velocity", "*",
RowBox[{"timestep", "/", "2"}]}]}], ",", "velocity"}], "}"}]}],
";"}], "\[IndentingNewLine]", ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"Length", "[", "copy", "]"}]}], "}"}]}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"save", "=",
RowBox[{"Append", "[",
RowBox[{"copy", ",", "save"}], "]"}]}], ";"}], "\[IndentingNewLine]",
",",
RowBox[{"{",
RowBox[{"t", ",", "1"}],
RowBox[{"(*",
RowBox[{"duration", "/", "timestep"}], "*)"}], "}"}]}], "]"}],
";"}]}], "Input",
CellChangeTimes->{{3.570435569488064*^9, 3.570435579924032*^9}, {
3.570436047681908*^9, 3.570436096107974*^9}, {3.570436182954269*^9,
3.57043619065565*^9}, {3.570436249351661*^9, 3.570436264057149*^9}, {
3.570436482056537*^9, 3.570436505561217*^9}, {3.570436566891554*^9,
3.570436648778678*^9}, {3.570436801757094*^9, 3.570436878645121*^9}, {
3.570438777096859*^9, 3.570438781114302*^9}, {3.570475770795468*^9,
3.570475870167328*^9}, {3.570475929249701*^9, 3.570476056997972*^9}, {
3.570476099060521*^9, 3.570476157429703*^9}, {3.570476192905132*^9,
3.57047619621323*^9}, {3.570476234545084*^9, 3.570476250560668*^9}, {
3.570476327853904*^9, 3.570476356872624*^9}, 3.570555156631707*^9, {
3.570555204804953*^9, 3.570555215209332*^9}, {3.570555457830521*^9,
3.570555460082066*^9}, {3.570555554096252*^9, 3.570555665844405*^9}, {
3.570555884011892*^9, 3.57055592390232*^9}, {3.570556007631363*^9,
3.570556028663843*^9}, {3.570556071931165*^9, 3.570556078170953*^9}, {
3.57055613509858*^9, 3.570556159693936*^9}, {3.570556784875675*^9,
3.570556795396773*^9}, 3.570556887651037*^9, {3.570557567414678*^9,
3.570557619699433*^9}, {3.570557697255869*^9, 3.57055771367307*^9}, {
3.570557808902663*^9, 3.570557828014281*^9}, {3.570558087750845*^9,
3.570558138002764*^9}, {3.570558779431265*^9, 3.570558861173751*^9}, {
3.570558925104301*^9, 3.570559124981513*^9}, {3.570559256129127*^9,
3.570559258607362*^9}, {3.570559320548593*^9, 3.570559328165243*^9}, {
3.570559398943368*^9, 3.570559432774058*^9}, {3.570559466013069*^9,
3.570559607137035*^9}, {3.570560111536153*^9, 3.570560181476921*^9}, {
3.570560254068055*^9, 3.570560381237493*^9}, {3.570560432714346*^9,
3.570560507999654*^9}, {3.57056057401969*^9, 3.570560595577877*^9},
3.570560643444715*^9, {3.570560723285571*^9, 3.570560731022263*^9}, {
3.57056078189823*^9, 3.570560806874611*^9}, {3.570560874995208*^9,
3.57056089962925*^9}, {3.570560935760569*^9, 3.570560991207608*^9}, {
3.570561021432295*^9, 3.57056134345827*^9}, {3.570561379957716*^9,
3.570561723870575*^9}, {3.570561863736884*^9, 3.570561910095651*^9}, {
3.570562002947625*^9, 3.570562033626163*^9}, {3.57056209484844*^9,
3.570562146904855*^9}, {3.570562178813542*^9, 3.570562284329372*^9}, {
3.570562337192585*^9, 3.570562447224684*^9}, {3.570562487647394*^9,
3.570562558973552*^9}, {3.570610926867229*^9, 3.570610932921216*^9}, {
3.570610972573696*^9, 3.570610982568364*^9}, {3.570611298000923*^9,
3.570611305711698*^9}, {3.570611396899224*^9, 3.570611525612483*^9}, {
3.570611619415633*^9, 3.570611635229945*^9}, {3.570611708683825*^9,
3.570611741760825*^9}, {3.570612279594372*^9, 3.570612370153102*^9}, {
3.57061240465423*^9, 3.570612462531642*^9}, {3.57061249893905*^9,
3.57061254201962*^9}, {3.570612803774081*^9, 3.570612810066462*^9}, {
3.570612874653041*^9, 3.5706128791641*^9}, {3.570613004156837*^9,
3.570613015708916*^9}, {3.570613127055634*^9, 3.570613259447728*^9}, {
3.570613358877699*^9, 3.570613406392174*^9}, {3.57061345091028*^9,
3.570613479783803*^9}, {3.570613515842619*^9, 3.570613625882575*^9}, {
3.570613874289561*^9, 3.570613875796937*^9}, {3.570613918900693*^9,
3.570613951408145*^9}, {3.570614032672703*^9, 3.570614151402813*^9}, {
3.570614213200922*^9, 3.570614233819411*^9}, {3.57061428113302*^9,
3.570614286203492*^9}, {3.570614333369061*^9, 3.570614388596216*^9}, {
3.570614625687794*^9, 3.570614747165774*^9}, {3.570615168316937*^9,
3.570615171833842*^9}, {3.570615203546132*^9, 3.570615256110603*^9}, {
3.570615301766916*^9, 3.570615306405421*^9}, {3.570615445324176*^9,
3.570615458656323*^9}, {3.570615812691613*^9, 3.570615820685139*^9}, {
3.570615851192446*^9, 3.570616055549274*^9}, {3.570616919547888*^9,
3.57061698688858*^9}, 3.570617018629981*^9, {3.5706221609351*^9,
3.570622229083275*^9}, {3.570622306505024*^9, 3.570622328345506*^9}, {
3.570622493443955*^9, 3.570622510802594*^9}, {3.570622671473086*^9,
3.570622686018014*^9}, {3.570622730979934*^9, 3.5706227479121*^9}, {
3.570622809965906*^9, 3.570622896360958*^9}, {3.570622933743848*^9,
3.570622944341255*^9}, {3.570623151040174*^9, 3.570623216547726*^9}, {
3.570623763137385*^9, 3.570623785252065*^9}, 3.570623941538093*^9, {
3.570624158285638*^9, 3.570624170877518*^9}, {3.570624328130849*^9,
3.570624341906576*^9}, {3.570624380462344*^9, 3.570624421133075*^9}, {
3.57062467024231*^9, 3.570624692114484*^9}, {3.570624855661772*^9,
3.570624864135428*^9}, {3.57062496888636*^9, 3.570625026762862*^9}, {
3.570625079775292*^9, 3.570625111204971*^9}, {3.570625346497323*^9,
3.570625457309383*^9}, {3.570625804728087*^9, 3.570626065615667*^9},
3.570630641839235*^9, {3.570630953232955*^9, 3.570630972057603*^9}, {
3.570631122495368*^9, 3.570631146285574*^9}, {3.570631206479655*^9,
3.570631235694284*^9}, {3.57063134756723*^9, 3.570631357572305*^9}, {
3.570631573438869*^9, 3.570631580897513*^9}, {3.570632652379234*^9,
3.570632662106324*^9}, {3.570632882893345*^9, 3.57063298494683*^9}, {
3.57063302136954*^9, 3.570633038983038*^9}, {3.570633085042765*^9,
3.57063321484628*^9}, {3.570633522927887*^9, 3.570633564251042*^9}, {
3.570633602420724*^9, 3.570633726684702*^9}, {3.570633758651245*^9,
3.570633770693071*^9}, {3.570633804554027*^9, 3.570633897972427*^9}, {
3.570634039513644*^9, 3.570634063596238*^9}, {3.570634166689269*^9,
3.570634178649679*^9}, {3.570634216642952*^9, 3.570634227582885*^9}, {
3.570634261654088*^9, 3.570634308583783*^9}, {3.570634344479799*^9,
3.570634350082058*^9}, {3.570634451715806*^9, 3.570634535082523*^9}, {
3.570634566181032*^9, 3.570634602300956*^9}, {3.570634690675637*^9,
3.570634699340708*^9}, {3.570634782018774*^9, 3.570634790685615*^9}, {
3.570634831470701*^9, 3.570634834338797*^9}, {3.570634920405794*^9,
3.570634926496916*^9}, {3.570634962592579*^9, 3.570634976093327*^9}, {
3.570635327349219*^9, 3.570635382145779*^9}, {3.570635476651309*^9,
3.57063547883751*^9}, {3.570635544362189*^9, 3.570635545679169*^9}, {
3.570635576860983*^9, 3.570635579164588*^9}, {3.570635689111726*^9,
3.570635701636354*^9}, {3.570635751199162*^9, 3.570635770498916*^9}, {
3.570635834576001*^9, 3.570635900649835*^9}, {3.57063597551328*^9,
3.570635980003112*^9}, {3.570636019994619*^9, 3.570636136675992*^9}, {
3.570636209737639*^9, 3.570636259151493*^9}, {3.570636382299241*^9,
3.570636424259966*^9}, {3.570636456378872*^9, 3.570636521323339*^9}, {
3.570636703206272*^9, 3.570636719211148*^9}, {3.570637038793014*^9,
3.570637272032727*^9}, {3.570637335531744*^9, 3.570637371165664*^9}, {
3.570637438710652*^9, 3.570637488595597*^9}, {3.570637525562011*^9,
3.570637530990187*^9}, 3.570637609362729*^9, {3.570637683390642*^9,
3.570637698065461*^9}, {3.570637732119528*^9, 3.570637733483896*^9}, {
3.570637773695812*^9, 3.5706378248991*^9}, {3.570637867614907*^9,
3.570637869598004*^9}, {3.570637945792075*^9, 3.570637959151289*^9}, {
3.570637996452588*^9, 3.570638007881616*^9}, {3.570638073630775*^9,
3.570638128309501*^9}, {3.57063816395545*^9, 3.570638238867973*^9}, {
3.570638533120716*^9, 3.570638539744157*^9}, {3.570638576356577*^9,
3.570638604733635*^9}, {3.570638952180334*^9, 3.57063898757261*^9}, {
3.570639034349913*^9, 3.570639074734451*^9}, {3.570639107632211*^9,
3.570639152777478*^9}, {3.570639194078144*^9, 3.570639211853692*^9}, {
3.57063926583299*^9, 3.570639278263086*^9}, {3.57063931099903*^9,
3.57063939015569*^9}, {3.570639423524086*^9, 3.570639427417193*^9}, {
3.570639462113339*^9, 3.570639752084349*^9}, {3.570639792016393*^9,
3.570639821019371*^9}, {3.570639900901769*^9, 3.570639904986793*^9}, {
3.570639939462665*^9, 3.570639988600002*^9}, {3.570640039786759*^9,
3.570640091004628*^9}, {3.570640396888854*^9, 3.570640430431286*^9}, {
3.570640475254289*^9, 3.570640486303945*^9}, {3.570640564285672*^9,
3.570640683366645*^9}, {3.570640728895855*^9, 3.570640782119903*^9}, {
3.570640827616505*^9, 3.570640836152946*^9}, {3.570640879945308*^9,
3.570640890095356*^9}, 3.570641798180428*^9, 3.570642461414378*^9, {
3.570642643561061*^9, 3.570642684466409*^9}, {3.570642721750995*^9,
3.570642727868158*^9}, {3.570642810177964*^9, 3.570642863138918*^9}, {
3.570643458884698*^9, 3.570643510576652*^9}, {3.57064358677965*^9,
3.570643603156504*^9}, {3.570648012121158*^9, 3.570648083659484*^9}, {
3.570648123278113*^9, 3.570648153538664*^9}, {3.570648195018873*^9,
3.570648201646061*^9}, 3.570648361618552*^9, 3.570648429387898*^9, {
3.570648462518191*^9, 3.570648501127069*^9}, {3.570648613818454*^9,
3.570648628750066*^9}, {3.570648702084752*^9, 3.570648703555202*^9}, {
3.570649216445603*^9, 3.570649244578455*^9}, {3.57065274275366*^9,
3.570652785579067*^9}, 3.570652943844882*^9, {3.570652979664102*^9,
3.570653019288721*^9}, {3.570653234468196*^9, 3.570653245740237*^9}, {
3.570653339546515*^9, 3.570653345473713*^9}, {3.57065348189522*^9,
3.570653499024075*^9}, {3.570653544155283*^9, 3.570653586960797*^9}, {
3.570653778657421*^9, 3.570653782795195*^9}, {3.570653824230966*^9,
3.570653836852996*^9}, {3.570654000857963*^9, 3.570654101995636*^9}, {
3.570688354434593*^9, 3.570688365715594*^9}, {3.57316264304309*^9,
3.573162652166056*^9}, {3.573162715966276*^9, 3.57316274899702*^9}, {
3.5731627936878*^9, 3.573162879921703*^9}, {3.57316293248524*^9,
3.5731629522233*^9}, {3.573162983837614*^9, 3.57316303781854*^9}, {
3.573163204789728*^9, 3.573163512662177*^9}, {3.573163550851895*^9,
3.573163604845626*^9}, {3.573163650899882*^9, 3.573163760703834*^9}, {
3.573163793705012*^9, 3.573164039727103*^9}, {3.57316412529687*^9,
3.573164420477318*^9}, 3.573164460132301*^9, {3.573164591251603*^9,
3.573164679643074*^9}, {3.573193243314626*^9, 3.573193345161047*^9}, {
3.573193387780495*^9, 3.573193403434025*^9}, {3.573193443140605*^9,
3.573193488597279*^9}, {3.573595517397467*^9, 3.573595518110782*^9}, {
3.573595559222562*^9, 3.573595566521836*^9}, {3.573595649393553*^9,
3.57359568150645*^9}, {3.573765953067832*^9, 3.573766307404636*^9}, {
3.573766361326684*^9, 3.573766441608101*^9}, {3.573766499094923*^9,
3.573766559511192*^9}, 3.573766597274201*^9, {3.573766653540774*^9,
3.573766891188721*^9}, {3.573766982140995*^9, 3.573767009513545*^9}, {
3.573794673820723*^9, 3.573794727930543*^9}, {3.57379514795592*^9,
3.573795149252124*^9}, {3.573795518016146*^9, 3.573795519878416*^9}, {
3.573795573908832*^9, 3.573795590214313*^9}, {3.573795682727774*^9,
3.573795743697661*^9}, {3.573795815396745*^9, 3.573795826655889*^9}, {
3.573795864309755*^9, 3.573795929562399*^9}, {3.573796031707746*^9,
3.573796038714358*^9}, {3.57379615876562*^9, 3.573796220075674*^9},
3.573796290359014*^9, {3.57379675351418*^9, 3.573796754223068*^9}, {
3.573833692199235*^9, 3.573833715561714*^9}, {3.573833838627775*^9,
3.573833845935717*^9}, {3.573833912956329*^9, 3.573833939778685*^9}, {
3.573833971573306*^9, 3.573834066906011*^9}, {3.57383410956691*^9,
3.573834132323716*^9}, 3.573835288275875*^9}],
Cell[BoxData[
FractionBox["625000",
RowBox[{"22468879468420441", " ", "\[Pi]"}]]], "Output",
CellChangeTimes->{
3.570635922151923*^9, 3.570636530956614*^9, 3.570637282242571*^9, {
3.570637414557991*^9, 3.570637489415976*^9}, 3.570637703192678*^9,
3.57063773411923*^9, {3.570637778170754*^9, 3.570637825555509*^9},
3.570637870176173*^9, {3.570637947203473*^9, 3.570637960638698*^9},
3.570638011984238*^9, {3.570638079333127*^9, 3.570638095658256*^9},
3.570638134139608*^9, {3.570638167937682*^9, 3.570638206421284*^9},
3.570638240767749*^9, 3.570638605370106*^9, 3.570638995545155*^9,
3.570639087003412*^9, 3.5706391533229*^9, 3.57063921246218*^9,
3.57063927898142*^9, 3.570639341941427*^9, 3.57063939604764*^9,
3.570640786506664*^9, 3.570640837634333*^9, 3.570640891284489*^9,
3.570642404279659*^9, 3.570642462177624*^9, 3.570642733273024*^9,
3.570642832360943*^9, 3.570643461261037*^9, {3.570643499458168*^9,
3.570643511459127*^9}, 3.570643608044922*^9, 3.570648019218054*^9, {
3.570648056516137*^9, 3.570648086357326*^9}, {3.570648130178736*^9,
3.570648156246073*^9}, 3.570648203010915*^9, 3.570648362639135*^9,
3.570648429912817*^9, 3.570648501930945*^9, 3.57064862987696*^9,
3.570648704305191*^9, 3.570649248301603*^9, 3.570653858169797*^9,
3.570654016065744*^9, {3.570654050203042*^9, 3.570654103169445*^9}}],
Cell[BoxData[
RowBox[{"-", "1.6021769999999999`*^-19"}]], "Output",
CellChangeTimes->{
3.570635922151923*^9, 3.570636530956614*^9, 3.570637282242571*^9, {
3.570637414557991*^9, 3.570637489415976*^9}, 3.570637703192678*^9,
3.57063773411923*^9, {3.570637778170754*^9, 3.570637825555509*^9},
3.570637870176173*^9, {3.570637947203473*^9, 3.570637960638698*^9},
3.570638011984238*^9, {3.570638079333127*^9, 3.570638095658256*^9},
3.570638134139608*^9, {3.570638167937682*^9, 3.570638206421284*^9},
3.570638240767749*^9, 3.570638605370106*^9, 3.570638995545155*^9,
3.570639087003412*^9, 3.5706391533229*^9, 3.57063921246218*^9,
3.57063927898142*^9, 3.570639341941427*^9, 3.57063939604764*^9,
3.570640786506664*^9, 3.570640837634333*^9, 3.570640891284489*^9,
3.570642404279659*^9, 3.570642462177624*^9, 3.570642733273024*^9,
3.570642832360943*^9, 3.570643461261037*^9, {3.570643499458168*^9,
3.570643511459127*^9}, 3.570643608044922*^9, 3.570648019218054*^9, {
3.570648056516137*^9, 3.570648086357326*^9}, {3.570648130178736*^9,
3.570648156246073*^9}, 3.570648203010915*^9, 3.570648362639135*^9,
3.570648429912817*^9, 3.570648501930945*^9, 3.57064862987696*^9,
3.570648704305191*^9, 3.570649248301603*^9, 3.570653858169797*^9,
3.570654016065744*^9, {3.570654050203042*^9, 3.570654103178141*^9}}],
Cell[BoxData["299792458"], "Output",
CellChangeTimes->{
3.570635922151923*^9, 3.570636530956614*^9, 3.570637282242571*^9, {
3.570637414557991*^9, 3.570637489415976*^9}, 3.570637703192678*^9,
3.57063773411923*^9, {3.570637778170754*^9, 3.570637825555509*^9},
3.570637870176173*^9, {3.570637947203473*^9, 3.570637960638698*^9},
3.570638011984238*^9, {3.570638079333127*^9, 3.570638095658256*^9},
3.570638134139608*^9, {3.570638167937682*^9, 3.570638206421284*^9},
3.570638240767749*^9, 3.570638605370106*^9, 3.570638995545155*^9,
3.570639087003412*^9, 3.5706391533229*^9, 3.57063921246218*^9,
3.57063927898142*^9, 3.570639341941427*^9, 3.57063939604764*^9,
3.570640786506664*^9, 3.570640837634333*^9, 3.570640891284489*^9,
3.570642404279659*^9, 3.570642462177624*^9, 3.570642733273024*^9,
3.570642832360943*^9, 3.570643461261037*^9, {3.570643499458168*^9,
3.570643511459127*^9}, 3.570643608044922*^9, 3.570648019218054*^9, {
3.570648056516137*^9, 3.570648086357326*^9}, {3.570648130178736*^9,
3.570648156246073*^9}, 3.570648203010915*^9, 3.570648362639135*^9,
3.570648429912817*^9, 3.570648501930945*^9, 3.57064862987696*^9,
3.570648704305191*^9, 3.570649248301603*^9, 3.570653858169797*^9,
3.570654016065744*^9, {3.570654050203042*^9, 3.570654103182712*^9}}],
Cell[BoxData["1000"], "Output",
CellChangeTimes->{
3.570635922151923*^9, 3.570636530956614*^9, 3.570637282242571*^9, {
3.570637414557991*^9, 3.570637489415976*^9}, 3.570637703192678*^9,
3.57063773411923*^9, {3.570637778170754*^9, 3.570637825555509*^9},
3.570637870176173*^9, {3.570637947203473*^9, 3.570637960638698*^9},
3.570638011984238*^9, {3.570638079333127*^9, 3.570638095658256*^9},
3.570638134139608*^9, {3.570638167937682*^9, 3.570638206421284*^9},
3.570638240767749*^9, 3.570638605370106*^9, 3.570638995545155*^9,
3.570639087003412*^9, 3.5706391533229*^9, 3.57063921246218*^9,
3.57063927898142*^9, 3.570639341941427*^9, 3.57063939604764*^9,
3.570640786506664*^9, 3.570640837634333*^9, 3.570640891284489*^9,
3.570642404279659*^9, 3.570642462177624*^9, 3.570642733273024*^9,
3.570642832360943*^9, 3.570643461261037*^9, {3.570643499458168*^9,
3.570643511459127*^9}, 3.570643608044922*^9, 3.570648019218054*^9, {
3.570648056516137*^9, 3.570648086357326*^9}, {3.570648130178736*^9,
3.570648156246073*^9}, 3.570648203010915*^9, 3.570648362639135*^9,
3.570648429912817*^9, 3.570648501930945*^9, 3.57064862987696*^9,
3.570648704305191*^9, 3.570649248301603*^9, 3.570653858169797*^9,
3.570654016065744*^9, {3.570654050203042*^9, 3.570654103187038*^9}}],
Cell[BoxData[
FractionBox["1", "100000000"]], "Output",
CellChangeTimes->{
3.570635922151923*^9, 3.570636530956614*^9, 3.570637282242571*^9, {
3.570637414557991*^9, 3.570637489415976*^9}, 3.570637703192678*^9,
3.57063773411923*^9, {3.570637778170754*^9, 3.570637825555509*^9},
3.570637870176173*^9, {3.570637947203473*^9, 3.570637960638698*^9},
3.570638011984238*^9, {3.570638079333127*^9, 3.570638095658256*^9},
3.570638134139608*^9, {3.570638167937682*^9, 3.570638206421284*^9},
3.570638240767749*^9, 3.570638605370106*^9, 3.570638995545155*^9,
3.570639087003412*^9, 3.5706391533229*^9, 3.57063921246218*^9,
3.57063927898142*^9, 3.570639341941427*^9, 3.57063939604764*^9,
3.570640786506664*^9, 3.570640837634333*^9, 3.570640891284489*^9,
3.570642404279659*^9, 3.570642462177624*^9, 3.570642733273024*^9,
3.570642832360943*^9, 3.570643461261037*^9, {3.570643499458168*^9,
3.570643511459127*^9}, 3.570643608044922*^9, 3.570648019218054*^9, {
3.570648056516137*^9, 3.570648086357326*^9}, {3.570648130178736*^9,
3.570648156246073*^9}, 3.570648203010915*^9, 3.570648362639135*^9,
3.570648429912817*^9, 3.570648501930945*^9, 3.57064862987696*^9,
3.570648704305191*^9, 3.570649248301603*^9, 3.570653858169797*^9,
3.570654016065744*^9, {3.570654050203042*^9, 3.570654103191494*^9}}],
Cell[BoxData[
FractionBox["1", "10000000000"]], "Output",
CellChangeTimes->{
3.570635922151923*^9, 3.570636530956614*^9, 3.570637282242571*^9, {
3.570637414557991*^9, 3.570637489415976*^9}, 3.570637703192678*^9,
3.57063773411923*^9, {3.570637778170754*^9, 3.570637825555509*^9},
3.570637870176173*^9, {3.570637947203473*^9, 3.570637960638698*^9},
3.570638011984238*^9, {3.570638079333127*^9, 3.570638095658256*^9},
3.570638134139608*^9, {3.570638167937682*^9, 3.570638206421284*^9},
3.570638240767749*^9, 3.570638605370106*^9, 3.570638995545155*^9,
3.570639087003412*^9, 3.5706391533229*^9, 3.57063921246218*^9,
3.57063927898142*^9, 3.570639341941427*^9, 3.57063939604764*^9,
3.570640786506664*^9, 3.570640837634333*^9, 3.570640891284489*^9,
3.570642404279659*^9, 3.570642462177624*^9, 3.570642733273024*^9,
3.570642832360943*^9, 3.570643461261037*^9, {3.570643499458168*^9,
3.570643511459127*^9}, 3.570643608044922*^9, 3.570648019218054*^9, {
3.570648056516137*^9, 3.570648086357326*^9}, {3.570648130178736*^9,
3.570648156246073*^9}, 3.570648203010915*^9, 3.570648362639135*^9,
3.570648429912817*^9, 3.570648501930945*^9, 3.57064862987696*^9,
3.570648704305191*^9, 3.570649248301603*^9, 3.570653858169797*^9,
3.570654016065744*^9, {3.570654050203042*^9, 3.570654103195993*^9}}],
Cell[BoxData["0.015`"], "Output",
CellChangeTimes->{
3.570635922151923*^9, 3.570636530956614*^9, 3.570637282242571*^9, {
3.570637414557991*^9, 3.570637489415976*^9}, 3.570637703192678*^9,
3.57063773411923*^9, {3.570637778170754*^9, 3.570637825555509*^9},
3.570637870176173*^9, {3.570637947203473*^9, 3.570637960638698*^9},
3.570638011984238*^9, {3.570638079333127*^9, 3.570638095658256*^9},
3.570638134139608*^9, {3.570638167937682*^9, 3.570638206421284*^9},
3.570638240767749*^9, 3.570638605370106*^9, 3.570638995545155*^9,
3.570639087003412*^9, 3.5706391533229*^9, 3.57063921246218*^9,
3.57063927898142*^9, 3.570639341941427*^9, 3.57063939604764*^9,
3.570640786506664*^9, 3.570640837634333*^9, 3.570640891284489*^9,
3.570642404279659*^9, 3.570642462177624*^9, 3.570642733273024*^9,
3.570642832360943*^9, 3.570643461261037*^9, {3.570643499458168*^9,
3.570643511459127*^9}, 3.570643608044922*^9, 3.570648019218054*^9, {
3.570648056516137*^9, 3.570648086357326*^9}, {3.570648130178736*^9,
3.570648156246073*^9}, 3.570648203010915*^9, 3.570648362639135*^9,
3.570648429912817*^9, 3.570648501930945*^9, 3.57064862987696*^9,
3.570648704305191*^9, 3.570649248301603*^9, 3.570653858169797*^9,
3.570654016065744*^9, {3.570654050203042*^9, 3.570654103200437*^9}}],
Cell[BoxData["5.003461427972281`*^-12"], "Output",
CellChangeTimes->{
3.570635922151923*^9, 3.570636530956614*^9, 3.570637282242571*^9, {
3.570637414557991*^9, 3.570637489415976*^9}, 3.570637703192678*^9,
3.57063773411923*^9, {3.570637778170754*^9, 3.570637825555509*^9},
3.570637870176173*^9, {3.570637947203473*^9, 3.570637960638698*^9},
3.570638011984238*^9, {3.570638079333127*^9, 3.570638095658256*^9},
3.570638134139608*^9, {3.570638167937682*^9, 3.570638206421284*^9},
3.570638240767749*^9, 3.570638605370106*^9, 3.570638995545155*^9,
3.570639087003412*^9, 3.5706391533229*^9, 3.57063921246218*^9,
3.57063927898142*^9, 3.570639341941427*^9, 3.57063939604764*^9,
3.570640786506664*^9, 3.570640837634333*^9, 3.570640891284489*^9,
3.570642404279659*^9, 3.570642462177624*^9, 3.570642733273024*^9,
3.570642832360943*^9, 3.570643461261037*^9, {3.570643499458168*^9,
3.570643511459127*^9}, 3.570643608044922*^9, 3.570648019218054*^9, {
3.570648056516137*^9, 3.570648086357326*^9}, {3.570648130178736*^9,
3.570648156246073*^9}, 3.570648203010915*^9, 3.570648362639135*^9,
3.570648429912817*^9, 3.570648501930945*^9, 3.57064862987696*^9,
3.570648704305191*^9, 3.570649248301603*^9, 3.570653858169797*^9,
3.570654016065744*^9, {3.570654050203042*^9, 3.57065410320484*^9}}],
Cell[BoxData["7000"], "Output",
CellChangeTimes->{
3.570635922151923*^9, 3.570636530956614*^9, 3.570637282242571*^9, {
3.570637414557991*^9, 3.570637489415976*^9}, 3.570637703192678*^9,
3.57063773411923*^9, {3.570637778170754*^9, 3.570637825555509*^9},
3.570637870176173*^9, {3.570637947203473*^9, 3.570637960638698*^9},
3.570638011984238*^9, {3.570638079333127*^9, 3.570638095658256*^9},
3.570638134139608*^9, {3.570638167937682*^9, 3.570638206421284*^9},
3.570638240767749*^9, 3.570638605370106*^9, 3.570638995545155*^9,
3.570639087003412*^9, 3.5706391533229*^9, 3.57063921246218*^9,
3.57063927898142*^9, 3.570639341941427*^9, 3.57063939604764*^9,
3.570640786506664*^9, 3.570640837634333*^9, 3.570640891284489*^9,
3.570642404279659*^9, 3.570642462177624*^9, 3.570642733273024*^9,
3.570642832360943*^9, 3.570643461261037*^9, {3.570643499458168*^9,
3.570643511459127*^9}, 3.570643608044922*^9, 3.570648019218054*^9, {
3.570648056516137*^9, 3.570648086357326*^9}, {3.570648130178736*^9,
3.570648156246073*^9}, 3.570648203010915*^9, 3.570648362639135*^9,
3.570648429912817*^9, 3.570648501930945*^9, 3.57064862987696*^9,
3.570648704305191*^9, 3.570649248301603*^9, 3.570653858169797*^9,
3.570654016065744*^9, {3.570654050203042*^9, 3.570654103209387*^9}}],
Cell[BoxData[
FractionBox["Qq",
SuperscriptBox["r", "2"]]], "Output",
CellChangeTimes->{
3.570635922151923*^9, 3.570636530956614*^9, 3.570637282242571*^9, {
3.570637414557991*^9, 3.570637489415976*^9}, 3.570637703192678*^9,
3.57063773411923*^9, {3.570637778170754*^9, 3.570637825555509*^9},
3.570637870176173*^9, {3.570637947203473*^9, 3.570637960638698*^9},
3.570638011984238*^9, {3.570638079333127*^9, 3.570638095658256*^9},
3.570638134139608*^9, {3.570638167937682*^9, 3.570638206421284*^9},
3.570638240767749*^9, 3.570638605370106*^9, 3.570638995545155*^9,
3.570639087003412*^9, 3.5706391533229*^9, 3.57063921246218*^9,
3.57063927898142*^9, 3.570639341941427*^9, 3.57063939604764*^9,
3.570640786506664*^9, 3.570640837634333*^9, 3.570640891284489*^9,
3.570642404279659*^9, 3.570642462177624*^9, 3.570642733273024*^9,
3.570642832360943*^9, 3.570643461261037*^9, {3.570643499458168*^9,
3.570643511459127*^9}, 3.570643608044922*^9, 3.570648019218054*^9, {
3.570648056516137*^9, 3.570648086357326*^9}, {3.570648130178736*^9,
3.570648156246073*^9}, 3.570648203010915*^9, 3.570648362639135*^9,
3.570648429912817*^9, 3.570648501930945*^9, 3.57064862987696*^9,
3.570648704305191*^9, 3.570649248301603*^9, 3.570653858169797*^9,
3.570654016065744*^9, {3.570654050203042*^9, 3.570654103213944*^9}}],
Cell[CellGroupData[{
Cell[BoxData["1"], "Print",
CellChangeTimes->{
3.570648057018836*^9, 3.570648087927434*^9, {3.570648131773521*^9,
3.570648157902485*^9}, 3.570648204684953*^9, 3.570648364331845*^9,
3.570648443906995*^9, 3.570648515915768*^9, 3.570648651957161*^9,
3.570648725586769*^9, 3.570649269234037*^9, 3.570653875745453*^9,
3.570654016603846*^9, {3.570654050353713*^9, 3.570654103345306*^9}}],
Cell[BoxData["1"], "Print",
CellChangeTimes->{
3.570648057018836*^9, 3.570648087927434*^9, {3.570648131773521*^9,
3.570648157902485*^9}, 3.570648204684953*^9, 3.570648364331845*^9,
3.570648443906995*^9, 3.570648515915768*^9, 3.570648651957161*^9,
3.570648725586769*^9, 3.570649269234037*^9, 3.570653875745453*^9,
3.570654016603846*^9, {3.570654050353713*^9, 3.57065410334864*^9}}]
}, Open ]]
}, Open ]],
Cell[BoxData[
RowBox[{"Print", "[", "]"}]], "Input",
CellChangeTimes->{{3.570654016799147*^9, 3.570654017551214*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox["Qq",
SuperscriptBox["r", "2"]]], "Input",
CellChangeTimes->{{3.570653871115998*^9, 3.570653871207316*^9}}],
Cell[BoxData["\<\"Hi\"\>"], "Print",
CellChangeTimes->{
3.570648057018836*^9, 3.570648087927434*^9, {3.570648131773521*^9,
3.570648157902485*^9}, 3.570648204684953*^9, 3.570648364331845*^9,
3.570648443906995*^9, 3.570648515915768*^9, 3.570648651957161*^9,
3.570648725586769*^9, 3.570649269234037*^9, 3.570653858456173*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], "&"}], "/@",
RowBox[{"save", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"Length", "[", "save", "]"}]}], "Input",
CellChangeTimes->{{3.57064838341959*^9, 3.570648410909831*^9}, {
3.57064911792482*^9, 3.570649178271738*^9}, {3.570653937203555*^9,
3.570653951441748*^9}}],
Cell[BoxData[
GraphicsBox[{{},
{RGBColor[0.24720000000000017`, 0.24, 0.6], PointBox[CompressedData["
1:eJwVl3cg1f8Xh8uOL6FUSpImUaJE6ERZCdkjJaKhyN577+265p2ue82ihHBK
ohAlhSQlDUIoKSM/v78+/55z3p/zOs+z0/6WsSPbmjVrNrGvWfP/71MxdesC
EyaucLiXLR8wA65h/R+ORQxIEm+OD+/Jgz8j100fZ2eAwHYd7TKpUEw18EsW
DPGFa1+8bN++ysNDCdu4HJPzwEjCh8Pmdho4HVA9lJtWBGOnBqNkP8Xg9JD6
qGQMBV4uKl/ZdcYTwi3ejp5MysaeLzxP5ZZzIOK1vNCFs3nowJ2rXB6vh39l
23qetBVhgdWvMK6cTPxsvWtfZkQJdD/x8fhoHIOivrl1Gu3BOMcm+1vW2QTl
6jzGTO8Skfe/uvdvsAgJ82krjYEZcFT5qEe0BBkOByoShNoLQfzcUEtCAhn9
b7LL312kISXiY2DgWSK+i7hA3l8eit2EC/yfSb7QJu0pPldFgZT9wfs+LmTC
jfb/4A1nBP6+7kDWlmegs9DaF8qGubiJcIX4kCccFX6+9RRQT4eLSS6XLutS
UCU92HA4kIA8j7VIzQvp6NhdfbsbivDewYMHB+ZzsbX42K2FoTxcfjjOVbqt
FOWNiuuNN2ZCSkqk8HFVIpg355ccSGNgneTct9B7RHwaJ8T80puL340Esi+k
JOPSYNvcu390fBqeKrPVigEthppRhc7OQH9+sU6X5zAap+m17U0qACdblPxy
gwU/rT1/1Egx8duv0NhBGzJ2lT/JV5KiQvacfnpgHx3ty21ocaRMXPvGrA9O
FWNYI5f+m/pCuNLnyRa2UAQzar02+sNRqHvLP2QDuQyLaWzPDCRT8OFZsw9/
wgrBvXC98N4Oe8yDloEhxxKIOiV1JELAA8N0X1amMrwxO7sHDT0doMNt0S/g
iQFWCNLwbUsMkOTGpB/F5kBPuuRhr6V0dPPduhQwXQZ3sx9t141NB54MtTXE
xDLMG1Y+9fyrJ7YWyi1dDiqH9IdvNZJPZsAQ140hoXkKTpkcuHZITQOXJ3o7
XjVkINn4x/KtARLcftdmV+3tip8krMvzs7Lx5jbFvespmTDOZp56bF8ehK3M
2y4YRODm4urGUvl8WJN/jZvtSzFuMbHlcepn4O9a4kj91Qxc1xnD321bBLb2
dR9219Ew4HjDFq3XVLxoVrDU201AvnkTi8bPGeixwm5M+UrFxbvlopoqR6BR
duNJIWoqDKl8nBW4SsHWiEb1vSQmap2JLEw1z0NrlTlD3hMUaNf3z7l1hwqn
L7h82naeiQ5vLw6Nc+bB+O6JgyrzMeCj1rbTrsMOD4u6GUosxkHckbFf7muZ
WHSQ62LOOzJsyIlZc49Rivc4R+beWuaA94s9sm73suGabEravj1U9Hg1ayv6
IBeo63ujdu+jwfVfHq3i/TQMN7II8fC/CdoMow1qG2KgWpIaMWkQCXp6Ro7b
wq/ivmzvtuiGSIiA4+mn9YvgVot1kmMeGQ1MBe4GalLAeyvn6/YAKjQvPo8d
2RAMMpVb9zUXk2DXwhK3K5WB6y9tDdYXp0Hrh7gh3mEayNz5LRmim4I99+P3
lDvbwZ8diqnndK3hpfi5NVPn8nAgZJ/Y3oVMTB9xFPJ5k48cssxeTYc04LB2
9LroRIBI7YZtljsTsTiQQ+oBfyzuc8lcsQkn4d5OAQcORjmwNdWGuJuE49Kh
tbFivJEooza7QSqTjHHeDyNnSHQsyq6+8XNrLthQM5WQSYHZeGaypxINZ7zO
xfu/oeDJ1Em+Sn4mrOnLaXweRAXnnuml6pDrKOsrvcXSqBxftH5OTWIlw3lO
c+6cYSrqcSKntw8FLgjQWw/6V2BZvbfk5hOeSJftdJbLDAXLal1V5tkCUJZX
q5qJY+KVgd4Dj3ek45scWU4bcQJKoeSpJ7XBoKNB1y6vJEOQiaK/kFYoPPP2
fS7alwwB7zKmh6Up4CM7I570h4ixFQFPGkXDsanUzYd/LABOXWfTEBKuQDJL
N3JkSyZkrHS7ZRzJx/7cuQhx/nw0Pl516MedBKiuk+q+xUaD3Q19TW/FHFHY
sinFy5KBsbKbeO96EUA/6L3kREgxpH3P2Tt4Pg4/znBYN5wl40CYg7zNXjLm
Z19harwKAYEzHNI/FJLxV+fdSG5xMt7LYwxYdhdjxcFz2hJa5fi0+HzeR3ZL
2B1kuNwwIY1fbYiEaDIN3pjf2Cj8Mgo0RhpXvk8S4Ge4g/b0Z004WKAeWJZN
QYH46IZHIdFoSk1YcH1BgGk1us1DZSqeuXLyytuMfHQrH7YdiPOC4dyvFVN2
ZfhBzEujpqsYPy76FUQ2BqKp6AvhF0+TscN+cbtSXQyU5FA//a7LhPffhopZ
X9Phwo+NS79YObB9u8zaQs0s6DgpG/ZmPwEniANXreZZYG4yt/+UjQN+Sq+8
aJGahBY2PLJ179Kh5FNR4u2gDBQ5xD3e8LYIH3lqKieeJUPzpSKK3+M89FsD
2Qpc6ainIPupu5GFyp2Hxe+SL+MZNrU8s7FYsM7i6v+T5Q6S0tKZX24V4egB
chmbLx19myCKcrsYFv+N1PyzdIV6lxHz19v9sG7JYUPReCaWLQ9fOCEcjrP/
xfm3nqRjojwxxnxLKR7/SN3mSb+FrjWxLfvmQyAhsC7V7I4nUG+L+CtFZ+AR
csnF9sIyVFBt4f09lAvhtRz3D8+lQW3HKPe8KQlnZqyTj6e7IO+n7LRCOyLo
9klC5Y4S7GCN5EoHR8BbH47Heqfp+FVqejQ3NwUx/NjhVzcTIVP9/COXCBLs
/sZskbtDxdfHSqqPmMRD0ZktDUlN+cBRZUD/Yx6K1ie0mtqE6MA91LbA25WF
6Xv9evN6KECV3iaX5BGMSt6Gpwd3xmC2pCH5r/95KG4lf323pwLZzRSzqi0z
kKfpi+h4Bgv3iyRe9zUkIvV6C686vRColqdS3unSUILE5hSYbQTtb/aVikbG
oeeUU81B1SJQ5PZ2P3KQgS+/aw2+CMqA73uKLifys7BEuOYSsTodn8fLpcd5
5cP70qoIzqUs4Nsiy+/xk4Jffy6cnrxcDBIc7+R+ipBB9naTqYB6Icb8tpCb
ZWTDpQ1qaolDTFysG25aE1yAV+nS5WnBNLDm/3RRdEMspFDtrRxfpKGb5K/M
fzqF+Dhp8jarhI4coXR+Dj8izoYtePSL50LEdOX55iUmDBjtYWdo5uOFXY4b
ggI9ob7W3/fGMhF+/deZ5U/PAH5h/QBTu2KochG0OpVLgFs7FAcf/KPC15Sf
H1o/uMOu1+yFio40eNf4mjfENgF2E1z9bAOSIT7+yN7GL2Q8UbLn1Wi9PZrK
W1vgFQ2sPp/X/2mFheXbL/we3Z6E5dm+e3ZMMUHSyqIxJICAvmkvz8VUkeHA
UY+p9vdR8O2syqGp1Zye5RjtWpzRwMKqM159o4U4E/h97x3zVKjPGuKKiY3G
F/IUP4/HRPxafs5cVYkIjqJ1O/s5E/DdVEvUd74SKEmRPEESscPdwc2GDqsc
tbOrVz1diwKClec/dMX64bZR/Vjpl3Fwdl39clFlEv76qvFXby0JlLbYJIRA
IRr5nt3kvDkJPD/5MiUa6MCXf4StL4sFni+s/66si0eFd+8M8i7T8IABuSl0
hozGPFQj30oa3gvyOPY5LRlDj2480mRKwMPcPFt2rMvCD5HVwpwj+eDEpX+e
a78bKEgeDDAvy8d7rwajRU8ScOrk99yPriQoKB54whGegekSLSmZuddgg968
nGsrE3f2vW7SfEzBFg1pY5fZJCwkel5aaCnFAtnDI0pm8ZAX9f7gbQoL9cJ0
WzSFcoCrriX/eQIJk12ekbrPpWKfmb/aaTIBk2fyYSKPgWo5ci1Lsrk4ZtVD
HcyPR66PJ9zKQmjwa17pyYNROrKP2wXprM2Cb32q6slRRFBwYJ38P139CCeU
W6xlQHxO0E1ZbgboTR8acCXthf4AJw2WiDUWRGpXW/7KwQCJjJN/d8diHKeq
Wt8fBvTV/Qg7IxgBVib3nsi1xyFbB1v1s+R0nPxlSjNTZ+H74Gjmg3g6PFTh
M14aTYDjGXffhX0no8zWfa93TJHwh9PlidgRV3Qr+yl083YY/rCZrN8jXojG
Sf46l4glwGqsDyNTriDnyYrSHstItAl/5DY2zgDNw1x65R1poPrG0VM7hohZ
w2VSfBeDIDE0teMOhYrVx+1ktD8646Dwobr+Y9m47tA1HiuDBEiZuZEXrUxD
jYvzLRmzNNg1097lE8LAI5mGdvV+WSD+ldCRpU6AsvYnrWFeNNg48r7VbycD
lCeV3lon56DwlZNGJZsJuIs8crf9bgaaDz/r5LyXicNcz1Kf7qOg5944286L
aUA4ThwtSUnAg0dy9aO9iyHq3viBdOVMvNjFMyKwmuefSly4j9US0dlT5qLn
qsdEW/6RjtRnwecC88DUbBLmxexfidNPgMHRcakG48twbyAmkr09DA9tevbx
/ipnXa25L5LcsRXj7Uo93pcxgRUXqFc54I/s+h5Z1/KLMSIg96LPGl/8b8WW
Ef6JBac/x0m1G6fjMaYqm+NSGcTf+fMgiByIzJynO4wn82C9zsSYsXIoVDjs
T1pHDMdvrXV2fFuTwNHXTGvsQSY0lfr1fK0lwsnWgG6Tn0SQ5njo075aT++w
hv3QJk/sv5H4Nc/IFa2vuO/Ap4n4XPdQLJsHDVoYfuXB3+gY83FURnq3L1AG
TgUuUpnwOUJ604uUNJz68afSVJWMLWNCMrezCuHaDaHK3zmZcJjuydrgSYTK
gt4HbPnJwKo541S0nQq3uB5Wp1jQMN87ZSHYkIENvnvJ7ECHKz+PpiRPZMON
yZRFdjEKyN2/8OqtYD6QDxPm/V2iIadIOk7vhDP6chUZj/+lQrqLvMTzPArw
2oZs1UhJhmX3q2FiB+nQp13s1rErDl8sLrwNac7Aq/eVRFT+JWCThHZb5MMi
cH48n3Fztd6wwi6zsJtMeB2lo/PpNRl9Rc5daWQRwTjegaM5NwvtAqk7LcpJ
eFq72EPavggr84d2cakRsLWr7r3w1wjcJPNIbv/GCugroT17YJSHIw6ZFwuS
xCD+Jt8r9SMFKLhyc7NQYDFa655uqubNx8InKtKnnzLxVLCj0GUVOgiWHb4l
9JMKTmWXT57Qp6GBO4Rw5WSD6Fn3xgQ5Al69PVBvbpMJ1uervdWulKMitSn7
e1UozKlO/ZQJ1wKNsw2rNzsd7gmdeyjfVwTrb0v1hmtkoeK1TlObj0SYsaQ5
d4xbAdsW3ZGYIDIu+Ae0/f2QgfzS/+p2DabC5fkNEZski2Be6Kye6FIG2Fap
k0buEsC+gY37P+tC9H8g429BLcAwu6iNHv5Z2DeoIW3JIiK//oJi0lgCmnZO
2xiEE3CMmfb68XI0Ct8xNP9zvAQpV/pM+Xoi4UL4+JdckVJsGf54VqkoHySa
+U6G8DNRuqL1bU9LKSSrvj9eF5UNXWPCaXHjBSCb/HziWjsJNjXTjThoyWjK
FyS+mVqMb8n5eZI8DDgWbPheqCsBNGnXeE+9zAB2N9I1g1NUlGMTjuooo8G2
qiTJEgk/nM9Y79DdQoBW9ftCgqvvlpi3agFHE7DkwP1dQitW2Pfr76+PPvmY
zKwi7R/1ARtP9/lhvACmbwiGp+Ur8PiS2tbSYSZ02T2q++1TAGxFYZYx28hg
tWmTr6ckA6of7HteX5aGdZ4cZh8/xuNya7HcrSfFwDsj5SEwnINVXUEeCVe9
cLue4FednVQkXP03rvUqD5hf5wpZh93BZ8zpkohxGFgMiGbW9pfjhafvz8w7
ReHVky81pNpZWKvfIxpUWQaNs8aOEi9M8cSn+ZzRHAr4ffhWAceKMLaWeYN/
YrWvtHTKrSUaSAvvleeJISD/nFyjSmcJxNfPqkvY+2Fh2EU6hrHQffcL5cdq
6aDdOkC7f8oNjyQ2PLypVwIeTt9H5u7F4NZHbW5zK6uc43kl9zI5Ara8WeQv
VUkE/kf6r4JW/W0+/pSbtn02rPjcD3Vri8DPyvVkQ3oaCvTZb9q5LxUyqn+M
5P2g4+Hjuo/Z9P3QqP/IZdvFMKzaeFvwvCcR8wIDMhx1/UF18+D63JcU2GNw
p/zUfxkYD8xuccVc/BT8aBvjDRP44pL688LzwUv3zY/DgklwfS+nM22V4+80
jA7tPpiJZraKinWCJRj6MXYgwdQLDwVmuG0nF+N1a+FyTl46pE479F4wSwHF
pVccbXHpkLnWdLNUJwPvRPmIDoqHYV4qcdRsAw0DaeNvJirykfVqivBb3hO4
Hj8g3W9jwqHYE6zGH9HQJ5q4+04RCTR0ApJKiq5BtuCmMlkHGnTEHrEjNkbD
JottqQXO+ZD9ub23SzoV09x09dsupmJBMFMjbjYOdVgbGDMXElH0CVvCqY3l
WGBuqdJlGwP1ozZDXt6FMLEmO03Un4xS6zqbdUSYYHdg3MLndQq0Psq6nkaj
g/wjg9Ia/VIIKthY178nF4nat9duViSDaOdVl69HinBn8Ngmf6XLGEkutbD2
34XflLoVzW+w0Cd4P7mtNBgyNuzM9tROAZ53AnrtlT7YqbPUxLMmBA+0Bqq3
m+Yim2S4f1YwExomYjcd35+HWhNNGoM+xRgn9yJOKI8AJCuGed+xDFDVb5zs
7aTiJiW3nKXDqSjY8nb8rB4RfxygvHNb54stIb5GNu0skJkvydpQXwYN7oKn
/ToCke+7vtUdztU7fKcn4cPHUozynuI/KkTBQU2TFZM6KvauPehA02XiHkqN
1/uX6WhhvN6Ac9X7DRR883YG5mLff6GHQvb7w4wNhC7GloNLr8uHKZ5ASPnB
Hl/jU4J2Do9H9+llwSeV8wXHLxFwu0zP77xuIgwIdSk9YcvDvyw3Xg2tPKg7
qW7lp0OFX78jjsrPFcHufVIcf27lI+X5+5fPrELw0pPHEvsMImBjzYnXu85T
YNqwQWO/ei68J2g0v02hgcJbGdHHoav3hG7nyq5KwltP48wLTicghYNvsVOz
AFwEfIwGDxFRpQACCVoZ4BLWX5hwjQgGFnebSsTz4aWpcb1aJA0V32TrqGl7
YvDDXg134VRkioTXPuCiAZHr0qlwpQRUpnts2QFFKKiToniJmQEfb9uPvCRp
g+JauYaJ76mgE/iPt6qdsspv2TVH9xRB1ZmrDSerWCh+beLq5Zw0uJz29Lij
BBk3nTd7pJwRhW4/tL7ktq9y84BhuKMSDcgm1k4ZSgZgWJHquW8iD+PDHkQ8
y6Ch49fiGS3zVHwv0OpW0Z2EwzIXye18VlhsICDSr5cJ6c6X3YPXMdHvh8zr
zy9TMLXlWMIMgwr8tZ9EIjbmwAFj7fbn8nRwPRcTqyplCRc5VrY8f5aEiS71
2xM2lIDbSuXvaP+rcLxnV0IoPRwtJk+GpF8rwUMO7y6FMpPBYc+KoOoLBtrN
+F/mzYzDtc3iw0viZcA93URpJqahgsKD5sDxMuBqpPWY9bmDpl5W+cbDVPS5
QH21YEdAJyvSM0lFBg5zTnBrloXhoq3q7CJfNu68W9/XwU7AeDmVabaaSFjb
WqVwmxwI6yejbpw5QUPWPuGWm+VXAAcvPcs/VIqxbDE+eb9ZGKfUo9r8nYjT
J09uNX+TA7r1DyyjqQXA/+msSEFgDnzfGmypKM2CQ9GtJ7NcGSirXTbqtZQO
jjw7nEzehMPHX5yR/5F08FfYPcHbzw2x4WYAV/nJCuB/bknS/pMIRTvvHO0V
JkKj08uFi/M02G7SRPgqbw/C22afKLfnYSLjtvScjiW0+X7SUYmLhbOyY6m1
MQTw+HMo6pZaPP75s4bcTwrE31VPLlQWMuDPQLJ8pmgi1Fhbuj4pKca60bLK
xKt5uF9jprvxlg5sfN/p9yvYF16+DT+9J7oEao4WaE1fLQAPrrGHm8tzQFlh
YDl5jIrc1kag5UGEpNMp9uU7Q7FJ+GG7hacBis3EKCqJGWE1946auptFOHh6
/VkILIJ/d0NwaMANkuICHCM3liLfyi+9fakMnMnkCXDYFw+CO2xjrWVDwPZP
nPPo6nxBasTauz4BZqUCdihvzIfY/Bdt2sosiLB3W2j5no13z2hHoTcTmyRr
W9xX83MxPOieQnMRNuu/cqw7XYSiIZfU+/ULgG/KJPGKFQuvc9z/yk5lYGB9
ceS4BBU/cfafevOTBUd4e18xHqaB+NJUiVdNJpQaPU5/sI8F2ZNXTnUXpEJZ
AJ9E4dIql92WmzS2o6P0nZp1NCEquD7UfKtikgh0/neNwWU0PJsT4r3FvxBC
jzq/Wo4ugL29tl8q9lDRaWLqn1pbMZwL6kxI3E8GmWNx62qekWF5VlkA/6Sj
RM/PiINPsyFaWueTqagrPlt7VkR7IQM2iXv9btoVjGKFTYdm/5WAEN3PwJpe
hCbcHxLOhqdi9y9WbcJICLw+oPTJqTIXhM9FLOg7sdDqYcy1zVJhgO1cLpfl
QmDt8bUjJ3UicVPbtMKRB3S88FeDrc+ZDLUySi4nTNVxKb/ZT0UwC08bcnC3
dibC2uuJERrnafjij8S//d8i0DbOffGUPBmVNCuSaNQycKE1qb/sjsH7f7p/
HXySgTq2PdTrShmY/f7ETc2HFFTmvUXj5GHitaFjRoemC0AtRWZ6UImF0sfW
3pjZn4yHO1wM8wTJ4PSoZCI+Ogec2RpxuD0dFQ3vOsseo0CUk1hb3OVI/PbF
+kQCkwR17+ayl1c9y9zrrd/E1atgcEPf9l17GSRtfK7D+6sQ/r7cpjc4lQEx
UhOPlczcwaK9NjhyOwvUvifMBStkQG+/JlhcYIKfvLmHO2cOdl6Y5fH77Ysu
C38cfHano2SH/JQtMsCXfdk28TQTT5NT9uxZb4XDc85F/E4pmPDTV8+Ei4rK
vdG291boIKvy2uzLTgIwDxzeyReQCrdWAr9ynCqG5qbHVVeICXhN15l/T1MR
Xra4F8g/log35SYN8QATFrcKzU4nM9E4/IfYnpAIID4yP39ZlQGPdtjv0xBL
w+Mt8+wmKzkQujQXFyWZicTRpCsfOulYQjSzXb+DCFkvYk6ubCjDSdcnLmP3
fOGNwfi9C/f8UMtfLWzdewoWvTnknnqJAjOO6ec9fuZDZXPBjaKwG6j7MWxu
2ZKGIuui84dLi7Aw2cCFn4eOcz6PX/8memPyra5H/HMsjAguvR4zmYdv1lmU
4EIBiNVKeCsSV/2lrzt9bC0VV2wE93yzvYDs598Vm0oRIeK8AO0gOxUGn0Zc
CP5FxME9jz5XCxFg6LeHYb15AD6z1dhZ5BeBQu+5TF8gEztVRhxKOKLBqHAj
/yWJYix+pZb47XcJdihz2lC7Y0HwaV/cc3VDZHTOvEt3C8dfHy4dJTUVw673
rv+9I1Hx4aeGeEEpL1w+t9PFfBsT7ij5BMbyr+aD733VobtJGEPBuP0O4Ti/
O7XP42AWbicdjDDeEARmlzpk70rQoS7k+pSasRl+k1bi7koyhptTxi45DQz0
OP6yjngmHyUeMp8F5hZjqddVuVp7Gga3xTW8jKHC1smnD3Y5+cKHnuJafiyF
CwO3rV+M5mDz2rYrFav59d3Q/ssOt1Tc8fPT7NKBPHBgX0wK1M5A0lLu7rne