-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfunctions.py
233 lines (196 loc) · 7.48 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import uuid
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import pandas as pd
from sklearn.metrics import roc_curve, auc
sns.set_style("whitegrid")
sns.set_context("paper", font_scale=1.4)
sns.set_palette("Set2")
#SWI
weights= {'A': 0.8356471476582918,
'C': 0.5208088354857734,
'E': 0.9876987431418378,
'D': 0.9079044671339564,
'G': 0.7997168496420723,
'F': 0.5849790194237692,
'I': 0.6784124413866582,
'H': 0.8947913996466419,
'K': 0.9267104557513497,
'M': 0.6296623675420369,
'L': 0.6554221515081433,
'N': 0.8597433107431216,
'Q': 0.789434648348208,
'P': 0.8235328714705341,
'S': 0.7440908318492778,
'R': 0.7712466317693457,
'T': 0.8096922697856334,
'W': 0.6374678690957594,
'V': 0.7357837119163659,
'Y': 0.6112801822947587}
#make folder for figs and data
def make_folder(names):
'''makes folder for results and figs.
names = list of folder names
'''
for _ in names:
try:
os.makedirs(os.path.join(os.getcwd(),_,''))
except FileExistsError:
pass
make_folder(['figs', 'results'])
def fasta_reader(file):
'''Converts .fasta to a pandas dataframe with accession as index
and sequence in a column 'sequence'
'''
fasta_df = pd.read_csv(file, sep='>', lineterminator='>', header=None)
fasta_df[['Accession', 'Sequence']] = fasta_df[0].str.split('\n', 1, \
expand=True)
fasta_df['Accession'] = fasta_df['Accession']
fasta_df['Sequence'] = fasta_df['Sequence'].replace('\n', '', regex=True).\
astype(str).str.upper().replace('U', 'T')
total_seq = fasta_df.shape[0]
fasta_df.drop(0, axis=1, inplace=True)
fasta_df = fasta_df[fasta_df.Sequence != '']
fasta_df = fasta_df[fasta_df.Sequence != 'NONE']
final_df = fasta_df.dropna()
remained_seq = final_df.shape[0]
if total_seq != remained_seq:
print("{} sequences were removed due to inconsistencies in"
"provided file.".format(total_seq-remained_seq))
return final_df
CODON_TO_AA={'TTT':'F','TCT':'S','TAT':'Y','TGT':'C','TTC':'F','TCC':'S',\
'TAC':'Y','TGC':'C','TTA':'L','TCA':'S','TAA':'stop',\
'TGA':'stop','TTG':'L','TCG':'S','TAG':'stop','TGG':'W',\
'CTT':'L','CCT':'P','CAT':'H','CGT':'R','CTC':'L','CCC':'P',\
'CAC':'H','CGC':'R','CTA':'L','CCA':'P','CAA':'Q','CGA':'R',\
'CTG':'L','CCG':'P','CAG':'Q','CGG':'R','ATT':'I','ACT':'T',\
'AAT':'N','AGT':'S','ATC':'I','ACC':'T','AAC':'N','AGC':'S',\
'ATA':'I','ACA':'T','AAA':'K','AGA':'R','ATG':'M','ACG':'T',\
'AAG':'K','AGG':'R','GTT':'V','GCT':'A','GAT':'D','GGT':'G',\
'GTC':'V','GCC':'A','GAC':'D','GGC':'G','GTA':'V','GCA':'A',\
'GAA':'E','GGA':'G','GTG':'V','GCG':'A','GAG':'E','GGG':'G'}
def translate(seq):
seq = seq[:-3]
length = (len(seq)- len(seq)%3)
split_func = lambda seq, n: [seq[i:i+n] for\
i in range(0, length, n)]
codons = split_func(seq, 3)
aa = ''
for c in codons:
aa+=CODON_TO_AA[c]
return aa
def solubility_score(seq, weights=weights):
'''weights for amino acids
'''
w = []
for i, v in enumerate(seq):
w.append(weights[v])
return w
def make_roc(df, labels, output=False, fname=None, c=None):
lw = 1.75
make_folder(['figs'])
fig = plt.figure(figsize=(4, 4))
for i, col in enumerate(df.columns):
preds = df[col].values
fpr, tpr, _ = roc_curve(labels, preds)
roc_auc = auc(fpr, tpr)
# if roc_auc < 0.5:
# roc_auc = 1 - roc_auc
if c:
if len(c) !=0 :
plt.plot(fpr, tpr, c=c[i],# c=np.random.rand(3,),
lw=lw, label=col +' (%0.2f)' % roc_auc)
else:
plt.plot(fpr, tpr, #c=np.random.rand(3,),
lw=lw, label=col +' (%0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.tick_params(
axis='x', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
bottom=False, # ticks along the bottom edge are off
top=False, # ticks along the top edge are off
labelbottom=True) # labels along the bottom edge are off
plt.xlabel('False positive rate (1-Specificity)')
plt.ylabel('True positive rate (Sensitivity)')
# sns.despine()
if output:
if fname == None:
fname = uuid.uuid4().hex.upper()[0:12]
loc = 'figs/' + fname
plt.savefig(loc, bbox_inches = 'tight', pad_inches = 0)
plt.show()
def corr_heatmap(d, squared=False, output=False, fname=None, xlim=None, ylim=None, cmap=None):
# Compute the correlation matrix
corr = d.corr(method='spearman')
df_to_plot = corr
if squared:
#squared correlation
corr_sq = corr*corr
df_to_plot = corr_sq
# Generate a mask for the upper triangle
mask = np.zeros_like(df_to_plot, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(8, 8))
if cmap is None:
# Generate a custom diverging colormap
cmap = sns.diverging_palette(10, 220, sep=40, l=25, as_cmap=True)
#cmap = sns.cubehelix_palette(8, start=.5, rot=-.75, as_cmap=True)
#cmap = sns.cubehelix_palette(50, as_cmap=True)
# Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(df_to_plot, mask=mask, cmap=cmap, vmax=.64, center=0,
square=True, linewidths=.5, cbar_kws={"shrink": .5}, annot=True, fmt=".2f")
if xlim is None:
ax.set_xlim(0,df_to_plot.shape[1]-1)
else:
ax.set_xlim(xlim[0], xlim[1])
if ylim is None:
ax.set_ylim(df_to_plot.shape[1], 1)
else:
ax.set_ylim(ylim[0], ylim[1])
if output:
if fname == None:
fname = uuid.uuid4().hex.upper()[0:12]
loc = 'figs/' + fname
plt.savefig(loc, bbox_inches = 'tight', pad_inches = 0)
plt.show()
#################################
## Functions for optimisation ##
################################
# Flexibility
# Normalized flexibility parameters (B-values), average
# Vihinen M., Torkkila E., Riikonen P. Proteins. 19(2):141-9(1994).
flexibilities_vih = {"A": 0.984, "C": 0.906, "E": 1.094, "D": 1.068,
"G": 1.031, "F": 0.915, "I": 0.927, "H": 0.950,
"K": 1.102, "M": 0.952, "L": 0.935, "N": 1.048,
"Q": 1.037, "P": 1.049, "S": 1.046, "R": 1.008,
"T": 0.997, "W": 0.904, "V": 0.931, "Y": 0.929}
def make_dic(arr):
'''Make an amino acid dictionary from an array of values
'''
dic = {}
ks = [k for k, v in flexibilities_vih.items()]
for i, v in enumerate(ks):
dic[v] = arr[i]
return dic
def cost_func(f, df):
'''cost function is the AUC
auc is returned negative because we will use a minimization algorithm
'''
weights = make_dic(f)
df['f'] = df['Protein'].apply(lambda x:solubility_score(x, weights))
df['Average_Score'] = df['f'].apply(lambda x:np.mean(x))
col = 'Average_Score'
preds = df[col].values
labels = df.Solubility.values
fpr, tpr, _ = roc_curve(labels, preds)
roc_auc = auc(fpr, tpr)
if roc_auc < 0.5:
roc_auc = 1-roc_auc
return -roc_auc