-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
77 lines (67 loc) · 2.52 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from torch.utils.data import Dataset
import numpy as np
import torch
class MultiviewDataset(Dataset):
def __init__(self, num_views, data_list, labels):
self.num_views = num_views
self.data_list = data_list
self.labels = labels
def __len__(self):
return self.data_list[0].shape[0]
def __getitem__(self, idx):
data = []
for i in range(self.num_views):
data.append(torch.tensor(self.data_list[i][idx]))
return data, torch.tensor(self.labels[idx]), torch.tensor(np.array(idx)).long()
class MultiviewDataset2(Dataset):
def __init__(self, num_views, data_list, labels):
self.num_views = num_views
self.data_list = data_list
self.labels = labels
def __len__(self):
return self.data_list[0].shape[0]
def __getitem__(self, idx):
data = []
for i in range(self.num_views):
x = torch.tensor(self.data_list[i][idx])
data.append(x.view(x.size()[0], 28, 28))
return data, torch.tensor(self.labels[idx]), torch.tensor(np.array(idx)).long()
def load_data(name):
data_path = './data/'
dataset_names = ['caltech_5m', 'uci', 'rgbd', 'voc', 'mnist_mv']
if name in dataset_names:
path = data_path + name + '.npz'
data = np.load(path)
num_views = int(data['n_views'])
data_list = []
for i in range(num_views):
x = data[f"view_{i}"]
if len(x.shape) > 2:
x = x.reshape([x.shape[0], -1])
data_list.append(x.astype(np.float32))
labels = data['labels']
dims = []
for i in range(num_views):
dims.append(data_list[i].shape[1])
class_num = labels.max() + 1
data_size = data_list[0].shape[0]
dataset = MultiviewDataset(num_views, data_list, labels)
return dataset, dims, num_views, data_size, class_num
elif name == 'mnist_mv' or 'fmnist':
path = data_path + name + '.npz'
data = np.load(path)
num_views = int(data['n_views'])
data_list = []
for i in range(num_views):
x = data[f"view_{i}"]
data_list.append(x)
labels = data['labels']
dims = []
for i in range(num_views):
dims.append(data_list[i].shape[1])
class_num = labels.max() + 1
data_size = data_list[0].shape[0]
dataset = MultiviewDataset2(num_views, data_list, labels)
return dataset, dims, num_views, data_size, class_num
else:
raise NotImplementedError