-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain_pytorch.py
64 lines (57 loc) · 2.67 KB
/
train_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# [TODO]: This is under developement
import torch
def train(epoch, model, loss_function, optimizer, training_data, y):
train_loss = 0
train_examples = 0
print(y)
for x_sentence, y_sentence in zip(training_data, y):
model.zero_grad()
# sen_input = prepare_sequence(sentence,word_to_idx)
# targets = prepare_sequence(tags,tag_to_idx)
# print(targets.shape)
print(x_sentence.shape)
tag_scores = model(x_sentence)
y_sentence = y_sentence.unsqueeze(0)
loss = loss_function(tag_scores, y_sentence)
train_examples += 1
loss.backward()
optimizer.step()
train_loss += loss
train_examples += len(y)
#############################################################################
# END OF YOUR CODE #
#############################################################################
avg_train_loss = train_loss / train_examples
avg_val_loss, val_accuracy = evaluate(model, loss_function, optimizer)
print("Epoch: {}/{}\tAvg Train Loss: {:.4f}\tAvg Val Loss: {:.4f}\t Val Accuracy: {:.0f}".format(epoch,
avg_train_loss,
avg_val_loss,
val_accuracy))
def evaluate(model, loss_function, optimizer, val_data):
# returns:: avg_val_loss (float)
# returns:: val_accuracy (float)
val_loss = 0
correct = 0
val_examples = 0
with torch.no_grad():
for sentence, tags in val_data:
#############################################################################
# TODO: Implement the evaluate loop
# Find the average validation loss along with the validation accuracy.
# Hint: To find the accuracy, argmax of tag predictions can be used.
#############################################################################
# model.zero_grad()
# # sen_input = prepare_sequence(sentence, word_to_idx)
# # targets = prepare_sequence(tags, tag_to_idx)
# tag_scores = model(sen_input)
# _, indices = torch.max(tag_scores, 1)
# val_loss += loss_function(tag_scores, targets)
# correct += torch.sum(indices == torch.LongTensor(targets))
# val_examples += len(targets)
passs
#############################################################################
# END OF YOUR CODE #
#############################################################################
val_accuracy = 100. * correct / val_examples
avg_val_loss = val_loss / val_examples
return avg_val_loss, val_accuracy