-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_regression.py
46 lines (35 loc) · 1.29 KB
/
linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
input_size = 1
output_size = 1
num_epochs = 100
learning_rate = .001
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
[9.779], [6.182], [7.59], [2.167], [7.042],
[10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
[3.366], [2.596], [2.53], [1.221], [2.827],
[3.465], [1.65], [2.904], [1.3]], dtype=np.float32)
model = nn.Linear(input_size, output_size)
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
inputs = torch.from_numpy(x_train)
targets = torch.from_numpy(y_train)
# forward pass
outputs = model(inputs)
loss = criterion(outputs, targets)
# backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch + 1) % 5 == 0:
print('epoch [{}/{}], loss: {:.4f}'.format(epoch + 1, num_epochs, loss.item()))
# graph
predicted = model(torch.from_numpy(x_train)).detach().numpy()
plt.plot(x_train, y_train, 'ro', label='Original Data')
plt.plot(x_train, predicted, label='Fitted line')
plt.legend()
plt.show()