-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogistic_regression.py
64 lines (49 loc) · 2.12 KB
/
logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
import torchvision
input_size = 784
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = .001
train_dataset = torchvision.datasets.MNIST(root='../../data',
train=True,
transform=transforms.ToTensor(),
download=True
)
test_dataset = torchvision.datasets.MNIST(root='../../data',
train=False,
transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
model = nn.Linear(input_size, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.reshape(-1, 28 * 28)
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
optimizer.step()
if (i + 1) % 100 == 0:
print('Epoch: [{}/{}], Step: [{}/{}], Loss: {:.4f}'.format(epoch + 1, num_epochs, i + 1, total_step,
loss.item()))
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, 28*28)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))