-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_CD.py
379 lines (264 loc) · 15.9 KB
/
main_CD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import argparse
from operator import mod
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
from dataset.dataset import AVDataset_CD
from models.basic_model import AVClassifier
from utils.utils import setup_seed, weight_init,re_init
EPISILON=1e-10
# NCE loss is used in supplementary material
class NCELoss(torch.nn.Module):
def __init__(self, temperature=0.1):
super(NCELoss, self).__init__()
self.temperature = temperature
self.softmax = nn.Softmax(dim=1)
def where(self, cond, x_1, x_2):
cond = cond.type(torch.float32)
return (cond * x_1) + ((1 - cond) * x_2)
def forward(self, f1, f2, targets):
### cuda implementation
f1 = F.normalize(f1, dim=1)
f2 = F.normalize(f2, dim=1)
## set distances of the same label to zeros
mask = targets.unsqueeze(1) - targets
self_mask = (torch.zeros_like(mask) != mask).float() ### where the negative samples are labeled as 1
dist = (f1.unsqueeze(1) - f2).pow(2).sum(2)
## convert l2 distance to cos distance
cos = 1 - 0.5 * dist
## convert cos distance to exponential space
pred_softmax = self.softmax(cos / self.temperature) ### convert to multi-class prediction scores
log_pos_softmax = - torch.log(pred_softmax + EPISILON) * (1 - self_mask.float())
log_neg_softmax = - torch.log(1 - pred_softmax + EPISILON) * self_mask.float()
log_softmax = log_pos_softmax.sum(1) / (1 - self_mask).sum(1).float() + log_neg_softmax.sum(1) / self_mask.sum(1).float()
loss = log_softmax
return loss.mean()
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', required=True, defult="CREMAD",type=str,
help='CREMAD')
parser.add_argument('--fusion_method', default='concat', type=str,
choices=['concat', 'gated', 'film'])
parser.add_argument('--mmcosine',default=False,type=bool,help='whether to involve mmcosine')
parser.add_argument('--scaling',default=10,type=float,help='scaling parameter in mmCosine')
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--optimizer', default='sgd', type=str, choices=['sgd', 'adam'])
parser.add_argument('--learning_rate', default=0.001, type=float, help='initial learning rate')
parser.add_argument('--lr_decay_step', default=100, type=int, help='where learning rate decays')
parser.add_argument('--lr_decay_ratio', default=0.1, type=float, help='decay coefficient')
#parser.add_argument('--ckpt_path', required=True, type=str, help='path to save trained models')
parser.add_argument('--ckpt_path', default='./log', type=str, help='path to save trained models')
parser.add_argument('--train', action='store_true', help='turn on train mode')
parser.add_argument('--use_tensorboard', default=True, type=bool, help='whether to visualize')
#parser.add_argument('--tensorboard_path', required=True, type=str, help='path to save tensorboard logs')
parser.add_argument('--tensorboard_path', default='/home/ruize_xu/CD/log_normal', type=str, help='path to save tensorboard logs')
parser.add_argument('--random_seed', default=0, type=int)
parser.add_argument('--gpu_ids', default='0, 1', type=str, help='GPU ids')
parser.add_argument("--lam",type=float,default=0)
## uni-modal pretrained checkpoint(mainly for ssw)
parser.add_argument('--audio_pretrain',default='None',type=str,help='path of pretrained audio resnet')
parser.add_argument('--visual_pretrain',default='None',type=str,help='path of pretrained visual resnet')
return parser.parse_args()
def train_epoch(args, epoch, model, device, dataloader, optimizer, writer=None):
criterion = nn.CrossEntropyLoss()
softmax = nn.Softmax(dim=1)
relu = nn.ReLU(inplace=True)
tanh = nn.Tanh()
NCE=NCELoss()
model.train()
print("Start training ... ")
_loss = 0
_loss_a = 0
_loss_v = 0
for step, (spec, image, label, name) in enumerate(dataloader):
optimizer.zero_grad()
spec = spec.to(device)
image = image.to(device)
label = label.to(device)
a, v, out = model(spec.unsqueeze(1).float(), image.float(),args=args)
nce_loss=NCE(a,v,label)
## our modality-wise normalization on weight and feature
if args.mmcosine:
out_a = torch.mm(F.normalize(a,dim=1), F.normalize(torch.transpose(model.module.fusion_module.fc_out.weight[:, :512], 0, 1),dim=0)) # w[n_classes,feature_dim*2]->W[feature_dim, n_classes], norm at dim 0.
out_v = torch.mm(F.normalize(v,dim=1), F.normalize(torch.transpose(model.module.fusion_module.fc_out.weight[:, 512:], 0, 1),dim=0))
out_a=out_a*args.scaling
out_v=out_v*args.scaling
out=out_a+out_v
else:
out_a = (torch.mm(a, torch.transpose(model.module.fusion_module.fc_out.weight[:, :512], 0, 1)) +
model.module.fusion_module.fc_out.bias / 2)
out_v = (torch.mm(v, torch.transpose(model.module.fusion_module.fc_out.weight[:, 512:], 0, 1)) +
model.module.fusion_module.fc_out.bias / 2)
if args.use_tensorboard:
label_onehot=nn.functional.one_hot(label,num_classes=out_v.size(1))
fy_v=torch.mean(torch.sum(out_v*label_onehot,dim=1))
fy_a=torch.mean(torch.sum(out_a*label_onehot,dim=1))
iteration = epoch * len(dataloader) + step
writer.add_scalar('data/logit_a', fy_a, iteration)
writer.add_scalar('data/logit_v', fy_v, iteration)
loss = criterion(out, label)+args.lam*nce_loss
loss_v = criterion(out_v, label)
loss_a = criterion(out_a, label)
loss.backward()
optimizer.step()
_loss += loss.item()
_loss_a += loss_a.item()
_loss_v += loss_v.item()
return _loss / len(dataloader), _loss_a / len(dataloader), _loss_v / len(dataloader)
def valid(args, model, device, dataloader,epoch):
softmax = nn.Softmax(dim=1)
if args.dataset == 'CREMAD':
n_classes = 6
else:
raise NotImplementedError('Incorrect dataset name {}'.format(args.dataset))
with torch.no_grad():
model.eval()
# TODO: more flexible
num = [0.0 for _ in range(n_classes)]
acc = [0.0 for _ in range(n_classes)]
acc_a = [0.0 for _ in range(n_classes)]
acc_v = [0.0 for _ in range(n_classes)]
for step, (spec, image, label, name) in enumerate(dataloader):
spec = spec.to(device)
image = image.to(device)
label = label.to(device)
a, v, out = model(spec.unsqueeze(1).float(), image.float(),args=args)
# approximate uni-modal evaluation
if args.mmcosine:
out_a = torch.mm(F.normalize(a,dim=1), F.normalize(torch.transpose(model.module.fusion_module.fc_out.weight[:, :512], 0, 1),dim=0)) # w[n_classes,feature_dim*2]->W[feature_dim, n_classes], norm at dim 0.
out_v = torch.mm(F.normalize(v,dim=1), F.normalize(torch.transpose(model.module.fusion_module.fc_out.weight[:, 512:], 0, 1),dim=0))
out_a=out_a*args.scaling
out_v=out_v*args.scaling
else:
out_a = (torch.mm(a, torch.transpose(model.module.fusion_module.fc_out.weight[:, :512], 0, 1)) +
model.module.fusion_module.fc_out.bias / 2)
out_v = (torch.mm(v, torch.transpose(model.module.fusion_module.fc_out.weight[:, 512:], 0, 1)) +
model.module.fusion_module.fc_out.bias / 2)
prediction = softmax(out)
pred_v = softmax(out_v)
pred_a = softmax(out_a)
for i, item in enumerate(name):
ma = prediction[i].cpu().data.numpy()
index_ma = np.argmax(ma)
v = pred_v[i].cpu().data.numpy()
index_v = np.argmax(v)
a = pred_a[i].cpu().data.numpy()
index_a = np.argmax(a)
num[label[i]] += 1.0
if index_ma == label[i]:
acc[label[i]] += 1.0
if index_v == label[i]:
acc_v[label[i]] += 1.0
if index_a == label[i]:
acc_a[label[i]] += 1.0
return sum(acc) / sum(num), sum(acc_a) / sum(num) , sum(acc_v) / sum(num),
def main():
args = get_arguments()
print(args)
setup_seed(args.random_seed)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_ids
gpu_ids = list(range(torch.cuda.device_count()))
device = torch.device('cuda:0')
model = AVClassifier(args)
model.to(device)
model = torch.nn.DataParallel(model, device_ids=gpu_ids)
model.cuda()
if args.audio_pretrain!='None':
loaded_dict_audio = torch.load(args.audio_pretrain)
state_dict_audio = loaded_dict_audio
model.module.audio_net.load_state_dict(state_dict_audio,strict=False)
if args.visual_pretrain!='None':
loaded_dict_visual = torch.load(args.visual_pretrain)
state_dict_visual = loaded_dict_visual
model.module.visual_net.load_state_dict(state_dict_visual,strict=False)
if args.optimizer == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=0.9, weight_decay=1e-4)
elif args.optimizer == 'adam':
optimizer = optim.Adam(model.parameters(),lr=args.learning_rate,betas=(0.9, 0.999),eps=1e-08,weight_decay=1e-4,amsgrad=False)
scheduler = optim.lr_scheduler.StepLR(optimizer, args.lr_decay_step, args.lr_decay_ratio)
if args.dataset=='CREMAD':
train_dataset = AVDataset_CD(args, mode='train')
test_dataset = AVDataset_CD(args, mode='test')
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=16, pin_memory=True)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size,
shuffle=False, num_workers=16)
if args.train:
best_acc = 0.0
for epoch in range(args.epochs):
print('Epoch: {}: '.format(epoch))
if args.use_tensorboard:
writer_path = os.path.join(args.tensorboard_path)
if not os.path.exists(writer_path):
os.mkdir(writer_path)
log_name = '{}_optimizer_{}_pre_a{}_pre_v{}_dataset_{}_mmcosine{}{}'.format(
args.fusion_method,
args.optimizer,
args.audio_pretrain,
args.visual_pretrain,
args.dataset,
args.mmcosine,
args.scaling
)
writer = SummaryWriter(os.path.join(writer_path, log_name))
batch_loss, batch_loss_a, batch_loss_v = train_epoch(args, epoch, model, device,
train_dataloader, optimizer, writer)
scheduler.step()
acc, acc_a, acc_v = valid(args, model, device, test_dataloader,epoch)
writer.add_scalars('Loss', {'Total Loss': batch_loss,
'Audio Loss': batch_loss_a,
'Visual Loss': batch_loss_v}, epoch)
writer.add_scalars('Evaluation', {'Total Accuracy': acc,
'Audio Accuracy': acc_a,
'Visual Accuracy': acc_v}, epoch)
else:
batch_loss, batch_loss_a, batch_loss_v = train_epoch(args, epoch, model, device,
train_dataloader, optimizer)
scheduler.step()
acc, acc_a, acc_v = valid(args, model, device, test_dataloader,epoch)
if acc > best_acc:
best_acc = float(acc)
if not os.path.exists(args.ckpt_path):
os.mkdir(args.ckpt_path)
model_name = 'best_model_of_dataset_{}_{}' \
'optimizer_{}_pre_a{}_pre_v{}_mmcosine_{}{}.pth'.format(args.dataset,
args.fusion_method,
args.optimizer,
args.audio_pretrain,
args.visual_pretrain,
args.mmcosine,
args.scaling
)
saved_dict = {'saved_epoch': epoch,
'fusion': args.fusion_method,
'acc': acc,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict()}
save_dir = os.path.join(args.ckpt_path, model_name)
torch.save(saved_dict, save_dir)
print('The best model has been saved at {}.'.format(save_dir))
print("Loss: {:.4f}, Acc: {:.4f}, Acc_a:{:.4f}, Acc_v:{:.4f}".format(batch_loss, acc,acc_a,acc_v))
else:
print("Loss: {:.4f}, Acc: {:.4f}, Best Acc: {:.4f}, Acc_a:{:.4f}, Acc_v:{:.4f}".format(batch_loss, acc, best_acc,acc_a,acc_v))
else:
# first load trained model
loaded_dict = torch.load(args.ckpt_path)
# epoch = loaded_dict['saved_epoch']
fusion = loaded_dict['fusion']
state_dict = loaded_dict['model']
# optimizer_dict = loaded_dict['optimizer']
# scheduler = loaded_dict['scheduler']
assert fusion == args.fusion_method, 'inconsistency between fusion method of loaded model and args !'
model = model.load_state_dict(state_dict)
print('Trained model loaded!')
acc, acc_a, acc_v = valid(args, model, device, test_dataloader,epoch=1001)
print('Accuracy: {}, accuracy_a: {}, accuracy_v: {}'.format(acc, acc_a, acc_v))
if __name__ == "__main__":
main()