Skip to content

Latest commit

 

History

History
358 lines (290 loc) · 9.53 KB

README.md

File metadata and controls

358 lines (290 loc) · 9.53 KB

Code for HRL-ACRA

This is the implementation of our paper, "Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning", accepted by IEEE Transactions on Services Computing (TSC).

Installation

It is suggested to enable the GPU to accelerate the training and inference process.

With GPU

sh install.sh -c=11.3

Here, c donates the version of CUDA, and 10.2 or 11.3 is recommended.

With CPU

sh install.sh

Quick Start

Run HRL-ACRA

1. Pretrain Lower-level Agent

python main.py \
--solver_name="hrl_ra" \
--eval_interval=10 \
--num_train_epochs=100 \
--summary_file_name="exp-wx_100-hrl_ra-training.csv" \
--seed=0

2. Train Upper-level Agent

python main.py \
--solver_name="hrl_ac" \
--sub_solver_name="hrl_ra" \
--eval_interval=10 \
--num_train_epochs=500 \
--summary_file_name="exp-wx_100-hrl_ac-training.csv" \
--pretrained_subsolver_model_path=$PretrainedHrlRaModelPath \
--seed=0

Here, you should specify pretrained_sub_model_path as the file path of pretrain lower-level agent model.

3. Test HRL-ACRA

python main.py \
--solver_name="hrl_ac" \
--sub_solver_name="hrl_ra"
--decode_strategy="beam" \
--k_searching=1 \
--num_train_epochs=0 \
--pretrained_model_path=$PretrainedHrlAcModelPath \
--pretrained_subsolver_model_path=$PretrainedHrlraModelPath \
--summary_file_name="exp-wx_100-hrl_acra-testing.csv" \
--seed=0

Here, you should specify the pretrained_model_path as the file path of pretrain upper-level agent model and pretrained_sub_model_path as the file path of pretrain lower-level agent model. k_searching donates the searching width of beam search. When it is set to 1, it degenerates into a greedy search. When its value is larger, the quality of the obtained solution is often higher. You can determine its value according to the configuration of your computer.

Run Baselines

There are baseline solvers divided into two categories, learning-based and heuristic.

Baseline Name Solver NAME Category Need to Pretrain
GRC grc_rank heuristic False
NRM nrm_rank heuristic False
PL pl_rank heuristic False
MCTS mct_vne learning-based False
GAE_BFS gae_bfs learning-based False
A3C-GCN a3c_gcn learning-based True
PG-CNN pg_cnn learning-based True

Run Baselines That Not Need to Pretrain

For heuristic solvers, they are learning-free for using fixed strategies. You can specify the SOLVER_NAME with the solver_name of heuristic baselines.

python main.py \
--solver_name=$SOLVER_NAME \
--summary_file_name="exp_wx_100-baselines.csv" \
--seed=0 

Here, you can replace $SOLVER_NAME with grc_rank, nrm_rank, pl_rank, mcts_vne, and gae_vne.

Run Baselines That Need to Pretrain

Train Baselines
python main.py \
--solver_name=$SOLVER_NAME \
--eval_interval=10 \
--num_train_epochs=100 \
--summary_file_name="exp_wx_100-baselines-training.csv" \
--seed=0

Here, you can replace $SOLVER_NAME with pg_cnn2 and a3c_gcn.

Test Baseline
python main.py \
--solver_name=$SOLVER_NAME \
--sub_solver_name="hrl_ra" \
--num_train_epochs=0 \
--summary_file_name="exp-wx_100-baselines-testing.csv" \
--pretrained_model_path=$PretrainedBaselineModelPath
--seed=0 \

Here, you should specify pretrained_sub_model_path as the file path of pretrain baseline agent model.

File Structure

.
|____settings ------------------------------- simulation settings 
|____config.py ------------------------------ config varibles
|____dataset -------------------------------- pre-generate dataset
|____install.sh ----------------------------- installation shell
|____solver --------------------------------- various VNR solvers
| |____solver.py ---------------------------- basic class of solver 
| |____learning
| | |____a3c_gcn ---------------------------- baseline solver: a3c-gcn
| | |____pg_cnn2 ---------------------------- baseline solver: pg-cnn
| | |____gae_vne ---------------------------- baseline solver: gae-bfs
| | |____hrl_ac ----------------------------- our upper-level agent for adimission control
| | |____hrl_ra ----------------------------- our lower-level agent for resource allocation
| | |____mcts_vne --------------------------- baseline solver: mcts
| | |____utils.py
| | |____obs_handler.py --------------------- obtain observation from environment
| | |____buffer.py -------------------------- reinforcement learning buffer
| | |____sub_rl_environment.py -------------- lower-level environment for resource allocation
| | |____rl_environment.py ------------------ upper-level environment for adimission control
| |____heuristic
|   |____node_rank.py ----------------------- baseline solvers: grc, nrm, pl
|____README.md
|____.gitignore
|____data
| |____attribute.py
| |______init__.py
| |____physical_network.py ------------------ physical network
| |____virtual_network.py ------------------- virtual network
| |____generator.py ------------------------- randomly generation
| |____utils.py
| |____network.py --------------------------- basic class of network
| |____virtual_network_request_simulator.py - vnr simulator
|____base
| |____controller.py ------------------------ basic class of network
| |____register.py -------------------------- solver register
| |____solution.py -------------------------- solution class
| |____recorder.py -------------------------- running logger
| |____utils.py
| |____loader.py ---------------------------- solver loader
| |____scenario.py -------------------------- simulation scenario
| |____environment.py ----------------------- basic class of Internet provider
| |____counter.py --------------------------- recoder statistic

Various Simulation Settings

Physical Network

The simulation settings file of physical network is placed at ./settings/p_net_setting.yaml.

Default Settings

num_nodes: 100
save_dir: dataset/p_net
topology:
  type: waxman
  wm_alpha: 0.5
  wm_beta: 0.2
link_attrs_setting:
  - distribution: uniform
    dtype: int
    generative: true
    high: 100
    low: 50
    name: bw
    owner: link
    type: resource
  - name: max_bw
    originator: bw
    owner: link
    type: extrema
node_attrs_setting:
  - name: cpu
    distribution: uniform
    dtype: int
    generative: true
    high: 100
    low: 50
    owner: node
    type: resource
  - name: max_cpu
    originator: cpu
    owner: node
    type: extrema
file_name: p_net.gml

Real Topologies Validation

To conduct validation on real topologies, please replace the topology with following parameters.

  • Brain Topology
topology:
  file_path: './dataset/topology/Brain.gml'
  • Geant Topology
topology:
  file_path: './dataset/topology/Geant.gml'

Virtual Network Requests

The simulation settings file of Virtual Network Requests is placed at ./settings/v_sim_setting.yaml.

Default Settings

num_v_nets: 1000
topology:
  random_prob: 0.5
  type: random
v_net_size:
  distribution: uniform
  dtype: int
  low: 2
  high: 10
arrival_rate:
  distribution: possion
  dtype: float
  lam: 0.04
  reciprocal: true
lifetime:
  distribution: exponential
  dtype: float
  scale: 1000
node_attrs_setting:
  - name: cpu
    distribution: uniform
    dtype: int
    generative: true
    low: 0
    high: 50
    owner: node
    type: resource
link_attrs_setting:
  - name: bw
    distribution: uniform
    dtype: int
    generative: true
    low: 0
    high: 50
    owner: link
    type: resource
save_dir: dataset/v_nets
v_nets_file_name: v_net.gml
v_nets_save_dir: v_nets
events_file_name: events.yaml
setting_file_name: v_sim_setting.yaml

Arrival Rate Test

To simulate various arrival rates of VNRs, please update the field arrival_rate -> lam.

arrival_rate:
  distribution: possion
  dtype: float
  lam: 0.04  # replace with 0.06 or 0.08
  reciprocal: true

Node Size Test

To simulate various node sizes of VNRs, please update the field node_size -> high.

v_net_size:
  distribution: uniform
  dtype: int
  low: 2
  high: 10   # replace with 15 or 20

Resource Request Test

To simulate various arrival rate of VNRs, please update both the field node_attrs_setting -> [0] -> high and the field link_attrs_setting -> [0] -> high.

node_attrs_setting:
  - name: cpu
    distribution: uniform
    dtype: int
    generative: true
    low: 0
    high: 50  # replace with 70 or 90
    owner: node
    type: resource
link_attrs_setting:
  - name: bw
    distribution: uniform
    dtype: int
    generative: true
    low: 0
    high: 50  # replace with 70 or 90
    owner: link
    type: resource

Citation

If you find this code useful, please cite our paper:

@ARTICLE{tfwang-tsc-2024-hrl-acra,
  author={Wang, Tianfu and Shen, Li and Fan, Qilin and Xu, Tong and Liu, Tongliang and Xiong, Hui},
  journal={IEEE Transactions on Services Computing}, 
  title={Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning}, 
  year={2024},
  volume={17},
  number={3},
  pages={1001-1015},
}

Related Resources

  • Virne is a simulator for resource allocation problems in network virtualization.
  • SDN-NFV-Papers is a paper list about Resource Allocation in Network Functions Virtualization (NFV) and Software-Defined Networking (SDN).