forked from Andrew-Zhu/GenImage
-
Notifications
You must be signed in to change notification settings - Fork 34
/
index.html
472 lines (396 loc) · 17 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="GenImage">
<meta name="keywords" content="GenImage">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>GenImage</title>
<!-- Global site tag (gtag.js) - Google Analytics
<script async src="https://www.googletagmanager.com/gtag/js?id=G-PYVRSFMDRL"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-PYVRSFMDRL');
</script> -->
<meta name="google-site-verification" content="6lbYN1vX7A4sD8SrVniq84UEKyEUSBgxeP7d3FjuuK0" />
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<!-- <link rel="icon" href="./static/images/icon.png"> -->
<link rel="stylesheet" href="./static/css/index.css">
<link rel="shortcut icon" href="path/to/favicon.ico" type="image/x-icon">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</head>
<style>
#main{
position: relative;;
width: 1200px;
}
.box{
float: left;
padding: 15px 0 0 15px;
/* background-color: red;*/
}
.pic{
width: 500px;
padding: 10px;
border: 1px solid #ccc;
border-radius: 5px;
background-color: #fff;
}
.pic img{
width: 500px;
}
</style>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">GenImage:</h1>
<h2 class="title is-2 publication-title">A Million-Scale Benchmark for Detecting AI-Generated Image</h2>
<div class="is-size-5">
<span class="author-block">
<a href="" style="color:#008AD7;font-weight:normal;">Mingjian Zhu<sup></sup>
</a>,
</span>
<span class="author-block">
<a href="" style="color:#008AD7;font-weight:normal;">Hanting Chen<sup></sup>
</a>,
</span>
<span class="author-block">
<a href="" style="color:#008AD7;font-weight:normal;">Qiangyu Yan<sup></sup>
</a>,
</span>
<span class="author-block">
<a href="" style="color:#008AD7;font-weight:normal;">Xudong Huang<sup></sup>
</a>,
</span>
<span class="author-block">
<a href="" style="color:#008AD7;font-weight:normal;">Guanyu Lin<sup></sup>
</a>,
</span>
<span class="author-block">
<a href="" style="color:#008AD7;font-weight:normal;">Wei Li<sup></sup>
</a>,
</span>
<span class="author-block">
<a href="" style="color:#008AD7;font-weight:normal;">Zhijun Tu<sup></sup>
</a>,
</span>
<span class="author-block">
<a href="" style="color:#008AD7;font-weight:normal;">Hailin Hu<sup></sup>
</a>,
</span>
<span class="author-block">
<a href="" style="color:#008AD7;font-weight:normal;">Jie Hu<sup></sup>
</a>,
</span>
<span class="author-block">
<a href="" style="color:#008AD7;font-weight:normal;">Yunhe Wang<sup></sup>
</div>
<br>
<div class="is-size-5 publication-authors">
<span class="author-block"><b style="color:#008AD7; font-weight:normal">▶ </b> Huawei Noah’s Ark Lab </span>
<!-- <span class="author-block"><b style="color:#F2A900; font-weight:normal">▶ </b>UCLA; </span> -->
<!-- <span class="author-block"><b style="color:#00A4EF; font-weight:normal">▶ </b>Microsoft Research, Redmond; </span> -->
<!-- <span class="author-block"><b style="color:#008AD7; font-weight:normal">▶ </b>Microsoft Cloud & AI </span> -->
</div>
<br>
<!-- <div class="is-size-5 publication-authors">
<span class="author-block"><b style="color:#e08ba0; font-weight:normal"> <b>In CVPR2023</b> </b></span>
</div> -->
<div class="column has-text-centered">
<div class="publication-links">
<span class="link-block">
<a href="https://arxiv.org/abs/2304.10592" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>Paper</span>
</a>
</span>
<span class="link-block">
<a href="https://github.com/Andrew-Zhu/GenImage" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>GitHub</span>
</a>
</span>
<span class="link-block">
<a href="https://pan.baidu.com/s/1i0OFqYN5i6oFAxeK6bIwRQ#list/path=%2F" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fa fa-database"></i>
</span>
<span>Dataset</span>
</a>
</span>
<script>
window.addEventListener('load', function() {
const urls = [
'https://bb0eec8976f38a480c.gradio.live',
'https://94c50413658b59829f.gradio.live',
'https://16440e488436f49d99.gradio.live',
'https://02edd560d60615d755.gradio.live',
];
const randomIndex = Math.floor(Math.random() * urls.length);
const randomURL = urls[randomIndex];
document.getElementById('randomLink').href = randomURL;
});
</script>
<!-- <span class="link-block">
<a id="randomLink" href="#" target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fa fa-play"></i>
</span>
<span>Demo</span>
</a>
</span> -->
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<script>
window.addEventListener('load', function() {
const urls = [
'https://bb0eec8976f38a480c.gradio.live',
'https://94c50413658b59829f.gradio.live',
'https://16440e488436f49d99.gradio.live',
'https://02edd560d60615d755.gradio.live',
];
const randomIndex = Math.floor(Math.random() * urls.length);
const randomURL = urls[randomIndex];
const iframe = document.getElementById('gradio');
iframe.setAttribute('src', randomURL);
});
</script>
<!-- <iframe id="gradio" width="100%" height="900">
<p>Gradio.</p>
</iframe> -->
<!-- <link rel="stylesheet" href="js/ft-carousel.css" />
<script src="js/jquery.min.js"></script>
<script src="js/ft-carousel.min.js"></script>
<script type="text/javascript">
$("#carousel_1").FtCarousel();
$("#carousel_2").FtCarousel({
index: 1,
auto: false
});
$("#carousel_3").FtCarousel({
index: 0,
auto: true,
time: 3000,
indicators: false,
buttons: true
});
</script> -->
<!-- <section class="hero teaser">
<div class="container is-max-desktop">
<div class="example">
<div class="ft-carousel" id="carousel_1">
<ul class="carousel-inner"> -->
<!-- <li class="carousel-item"><img src="demos/wop_2.png" /></li>
<li class="carousel-item"><img src="demos/cook_1.png" /></li>
<li class="carousel-item"><img src="demos/fix_1.png" /></li>
<li class="carousel-item"><img src="demos/rhyme_1.png" /></li> -->
<!-- <li class="carousel-item"><img src="img/a1.jpg" /></li>
<li class="carousel-item"><img src="img/a2.jpg" /></li>
<li class="carousel-item"><img src="img/a3.jpg" /></li>
<li class="carousel-item"><img src="img/a4.jpg" /></li>
<li class="carousel-item"><img src="img/a5.jpg" /></li>
<li class="carousel-item"><img src="img/a6.jpg" /></li>
</ul>
</div>
</div>
</div>
</section> -->
<!--
<section class="hero is-small">
<div class="hero-body">
<div class="container">
<div id="results-carousel" class="carousel results-carousel">
<div class="item">
<img src="demos/wop_2.png" alt="MY ALT TEXT"/>
<h2 class="subtitle has-text-centered">
</h2>
</div>
<div class="item">
<img src="demos/cook_1.png" alt="MY ALT TEXT"/>
<h2 class="subtitle has-text-centered">
</h2>
</div>
<div class="item">
<img src="demos/fix_1.png" alt="MY ALT TEXT"/>
<h2 class="subtitle has-text-centered">
</h2>
</div>
<div class="item">
<img src="demos/rhyme_1.png" alt="MY ALT TEXT"/>
<h2 class="subtitle has-text-centered">
</h2>
</div>
</div>
</div>
</div>
</section>
-->
<link rel="stylesheet" type="text/css" href="js/simple_style.css" />
<script type="text/javascript" src="js/simple_swiper.js"></script>
<!-- <div class="app">
<div id="swiper-demo" class="simple-swiper-container">
<a id="prev" class="btn btn-prev"></a>
<a id="next" class="btn btn-next"></a>
<div class="pagination"></div>
</div>
</div>
<p id="index"></p>
<script type="text/javascript">
new SimSwiper("#swiper-demo", {
autoplay: 4000,
duration: 300,
easing: 'ease',
button: {
prev: "#prev", // 前进后退按钮
next: "#next"
},
pagination: {
el: '.pagination',
click: true// 是否可以点击
},
// 轮播图数据
data: [{
index: 0,
href: '#',
src: 'demos/wop_2.png'
}, {
index: 1,
href: '#',
src: 'demos/cook_1.png'
}, {
index: 2,
href: '#',
src: 'demos/fix_1.png'
}, {
index: 3,
href: '#',
src: 'demos/rhyme_1.png'
}]
});
</script> -->
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
The extraordinary ability of generative models to generate photographic images has intensified concerns about the spread of disinformation, thereby leading to the demand for detectors capable of distinguishing between AI-generated fake images and real images. However, the lack of large datasets containing images from the most advanced image generators poses an obstacle to the development of such detectors. In this paper, we introduce the GenImage dataset, which has the following advantages: 1) Plenty of Images, including over one million pairs of AI-generated fake images and collected real images. 2) Rich Image Content, encompassing a broad range of image classes. 3) State-of-the-art Generators, synthesizing images with advanced diffusion models and GANs. The aforementioned advantages allow the detectors trained on GenImage to undergo a thorough evaluation and demonstrate strong applicability to diverse images. We conduct a comprehensive analysis of the dataset and propose two tasks for evaluating the detection method in resembling real-world scenarios. The cross-generator image classification task measures the performance of a detector trained on one generator when tested on the others. The degraded image classification task assesses the capability of the detectors in handling degraded images such as low-resolution, blurred, and compressed images. With the GenImage dataset, researchers can effectively expedite the development and evaluation of superior AI-generated image detectors in comparison to prevailing methodologies.
</b>
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
<br>
<br>
<!-- Paper video. -->
<!-- <div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Video</h2>
<div class="publication-video">
<iframe width=“560” height=“315" src=“https://www.youtube.com/embed/__tftoxpBAw” title=“YouTube video player” frameborder=“0” allow=“accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share” allowfullscreen></iframe>
</div>
</div>
</div> -->
<!-- <section class="hero is-small is-light">
<div class="hero-body"> -->
<!-- </div>
</section> -->
<!--/ Demo. -->
<!-- <br>
<br>
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Demo</h2>
</div>
</div>
<div class="column is-full-width">
<div class="columns is-centered">
<img id="teaser" width="90%" src="images/demo6_AdobeExpress.gif">
</div>
<div class="columns is-centered">
<h1>
<p style="font-family:Times New Roman"><b>X-GPT: Connecting generalist X-Decoder with GPT-3</b>
</h1>
</div>
</div>
<br>
<div class="column is-full-width">
<div class="columns is-centered">
<img id="teaser" width="90%" src="images/inpaint.gif">
</div>
<div class="columns is-centered">
<h1>
<p style="font-family:Times New Roman"><b>Instruct-X-Decoder: Object-centric instructional image editing</b>
</h1>
</div>
</div> -->
</div>
<div class="columns is-centered has-text-centered">
<div class="column is-six-fifths">
<h2 class="title is-3">Examples</h2>
<div class="content has-text-justified">
</div>
<img id="Examples" width="80%" src="Examples/visulization.png">
<br>
<br>
</div>
</section>
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>
@article{zhu2023genimage,
title={GenImage: A Million-Scale Benchmark for Detecting AI-Generated Image},
author={Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li, Zhijun Tu, Hailin Hu, Jie Hu, Yunhe Wang},
journal={arXiv preprint arXiv:},
year={2023}
}
</code></pre>
</div>
</section>
<section class="section" id="License">
<div class="container is-max-desktop content">
<h2 class="title">License</h2>
<p>
Unless specifically labeled otherwise, these Datasets are provided to You under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License (“CC BY-NC-SA 4.0”), with the additional terms included herein. The CC BY-NC-SA 4.0 may be accessed at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode. When You download or use the Datasets from the Website or elsewhere, You are agreeing to comply with the terms of CC BY-NC-SA 4.0, and also agreeing to the Dataset Terms. Where these Dataset Terms conflict with the terms of CC BY-NC-SA 4.0, these Dataset Terms shall prevail. We reiterate once again that this dataset is used only for non-commercial purposes such as academic research, teaching, or scientific publications. We prohibits You from using the dataset or any derivative works for commercial purposes, such as selling data or using it for commercial gain.
</p>
</div>
</section>
<script src="js/Underscore-min.js"></script>
<script src="js/index.js"></script>
</body>
</html>