-
Notifications
You must be signed in to change notification settings - Fork 191
/
Copy pathok.py
executable file
·811 lines (726 loc) · 39.3 KB
/
ok.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
__doc__ = """
PyKrige
=======
Code by Benjamin S. Murphy and the PyKrige Developers
bscott.murphy@gmail.com
Summary
-------
Contains class OrdinaryKriging, which provides easy access to
2D Ordinary Kriging.
References
----------
.. [1] P.K. Kitanidis, Introduction to Geostatistcs: Applications in
Hydrogeology, (Cambridge University Press, 1997) 272 p.
Copyright (c) 2015-2018, PyKrige Developers
"""
import numpy as np
import scipy.linalg
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt
from . import variogram_models
from . import core
from .core import _adjust_for_anisotropy, _initialize_variogram_model, \
_make_variogram_parameter_list, _find_statistics
import warnings
class OrdinaryKriging:
"""Convenience class for easy access to 2D Ordinary Kriging.
Parameters
----------
x : array_like
X-coordinates of data points.
y : array_like
Y-coordinates of data points.
z : array-like
Values at data points.
variogram_model : str, optional
Specifies which variogram model to use; may be one of the following:
linear, power, gaussian, spherical, exponential, hole-effect.
Default is linear variogram model. To utilize a custom variogram model,
specify 'custom'; you must also provide variogram_parameters and
variogram_function. Note that the hole-effect model is only technically
correct for one-dimensional problems.
variogram_parameters : list or dict, optional
Parameters that define the specified variogram model. If not provided,
parameters will be automatically calculated using a "soft" L1 norm
minimization scheme. For variogram model parameters provided in a dict,
the required dict keys vary according to the specified variogram
model: ::
linear - {'slope': slope, 'nugget': nugget}
power - {'scale': scale, 'exponent': exponent, 'nugget': nugget}
gaussian - {'sill': s, 'range': r, 'nugget': n}
OR
{'psill': p, 'range': r, 'nugget':n}
spherical - {'sill': s, 'range': r, 'nugget': n}
OR
{'psill': p, 'range': r, 'nugget':n}
exponential - {'sill': s, 'range': r, 'nugget': n}
OR
{'psill': p, 'range': r, 'nugget':n}
hole-effect - {'sill': s, 'range': r, 'nugget': n}
OR
{'psill': p, 'range': r, 'nugget':n}
Note that either the full sill or the partial sill
(psill = sill - nugget) can be specified in the dict.
For variogram model parameters provided in a list, the entries
must be as follows: ::
linear - [slope, nugget]
power - [scale, exponent, nugget]
gaussian - [sill, range, nugget]
spherical - [sill, range, nugget]
exponential - [sill, range, nugget]
hole-effect - [sill, range, nugget]
Note that the full sill (NOT the partial sill) must be specified
in the list format.
For a custom variogram model, the parameters are required, as custom
variogram models will not automatically be fit to the data.
Furthermore, the parameters must be specified in list format, in the
order in which they are used in the callable function (see
variogram_function for more information). The code does not check
that the provided list contains the appropriate number of parameters
for the custom variogram model, so an incorrect parameter list in
such a case will probably trigger an esoteric exception someplace
deep in the code.
NOTE that, while the list format expects the full sill, the code
itself works internally with the partial sill.
variogram_function : callable, optional
A callable function that must be provided if variogram_model is
specified as 'custom'. The function must take only two arguments:
first, a list of parameters for the variogram model; second, the
distances at which to calculate the variogram model. The list
provided in variogram_parameters will be passed to the function
as the first argument.
nlags : int, optional
Number of averaging bins for the semivariogram. Default is 6.
weight : bool, optional
Flag that specifies if semivariance at smaller lags should be weighted
more heavily when automatically calculating variogram model.
The routine is currently hard-coded such that the weights are
calculated from a logistic function, so weights at small lags are ~1
and weights at the longest lags are ~0; the center of the logistic
weighting is hard-coded to be at 70% of the distance from the shortest
lag to the largest lag. Setting this parameter to True indicates that
weights will be applied. Default is False. (Kitanidis suggests that the
values at smaller lags are more important in fitting a variogram model,
so the option is provided to enable such weighting.)
anisotropy_scaling : float, optional
Scalar stretching value to take into account anisotropy.
Default is 1 (effectively no stretching).
Scaling is applied in the y-direction in the rotated data frame
(i.e., after adjusting for the anisotropy_angle, if anisotropy_angle
is not 0). This parameter has no effect if coordinate_types is
set to 'geographic'.
anisotropy_angle : float, optional
CCW angle (in degrees) by which to rotate coordinate system in
order to take into account anisotropy. Default is 0 (no rotation).
Note that the coordinate system is rotated. This parameter has
no effect if coordinate_types is set to 'geographic'.
verbose : bool, optional
Enables program text output to monitor kriging process.
Default is False (off).
enable_plotting : bool, optional
Enables plotting to display variogram. Default is False (off).
enable_statistics : bool, optional
Default is False
coordinates_type : str, optional
One of 'euclidean' or 'geographic'. Determines if the x and y
coordinates are interpreted as on a plane ('euclidean') or as
coordinates on a sphere ('geographic'). In case of geographic
coordinates, x is interpreted as longitude and y as latitude
coordinates, both given in degree. Longitudes are expected in
[0, 360] and latitudes in [-90, 90]. Default is 'euclidean'.
References
----------
.. [1] P.K. Kitanidis, Introduction to Geostatistcs: Applications in
Hydrogeology, (Cambridge University Press, 1997) 272 p.
"""
eps = 1.e-10 # Cutoff for comparison to zero
variogram_dict = {'linear': variogram_models.linear_variogram_model,
'power': variogram_models.power_variogram_model,
'gaussian': variogram_models.gaussian_variogram_model,
'spherical': variogram_models.spherical_variogram_model,
'exponential': variogram_models.exponential_variogram_model,
'hole-effect': variogram_models.hole_effect_variogram_model}
def __init__(self, x, y, z, variogram_model='linear',
variogram_parameters=None, variogram_function=None, nlags=6,
weight=False, anisotropy_scaling=1.0, anisotropy_angle=0.0,
verbose=False, enable_plotting=False, enable_statistics=False,
coordinates_type='euclidean'):
# Code assumes 1D input arrays of floats. Ensures that any extraneous
# dimensions don't get in the way. Copies are created to avoid any
# problems with referencing the original passed arguments.
# Also, values are forced to be float... in the future, might be worth
# developing complex-number kriging (useful for vector field kriging)
self.X_ORIG = \
np.atleast_1d(np.squeeze(np.array(x, copy=True, dtype=np.float64)))
self.Y_ORIG = \
np.atleast_1d(np.squeeze(np.array(y, copy=True, dtype=np.float64)))
self.Z = \
np.atleast_1d(np.squeeze(np.array(z, copy=True, dtype=np.float64)))
self.verbose = verbose
self.enable_plotting = enable_plotting
if self.enable_plotting and self.verbose:
print("Plotting Enabled\n")
# adjust for anisotropy... only implemented for euclidean (rectangular)
# coordinates, as anisotropy is ambiguous for geographic coordinates...
if coordinates_type == 'euclidean':
self.XCENTER = (np.amax(self.X_ORIG) + np.amin(self.X_ORIG))/2.0
self.YCENTER = (np.amax(self.Y_ORIG) + np.amin(self.Y_ORIG))/2.0
self.anisotropy_scaling = anisotropy_scaling
self.anisotropy_angle = anisotropy_angle
if self.verbose:
print("Adjusting data for anisotropy...")
self.X_ADJUSTED, self.Y_ADJUSTED = \
_adjust_for_anisotropy(np.vstack((self.X_ORIG, self.Y_ORIG)).T,
[self.XCENTER, self.YCENTER],
[self.anisotropy_scaling],
[self.anisotropy_angle]).T
elif coordinates_type == 'geographic':
# Leave everything as is in geographic case.
# May be open to discussion?
if anisotropy_scaling != 1.0:
warnings.warn("Anisotropy is not compatible with geographic "
"coordinates. Ignoring user set anisotropy.",
UserWarning)
self.XCENTER= 0.0
self.YCENTER= 0.0
self.anisotropy_scaling = 1.0
self.anisotropy_angle = 0.0
self.X_ADJUSTED = self.X_ORIG
self.Y_ADJUSTED = self.Y_ORIG
else:
raise ValueError("Only 'euclidean' and 'geographic' are valid "
"values for coordinates-keyword.")
self.coordinates_type = coordinates_type
# set up variogram model and parameters...
self.variogram_model = variogram_model
if self.variogram_model not in self.variogram_dict.keys() and \
self.variogram_model != 'custom':
raise ValueError("Specified variogram model '%s' "
"is not supported." % variogram_model)
elif self.variogram_model == 'custom':
if variogram_function is None or not callable(variogram_function):
raise ValueError("Must specify callable function for "
"custom variogram model.")
else:
self.variogram_function = variogram_function
else:
self.variogram_function = self.variogram_dict[self.variogram_model]
if self.verbose:
print("Initializing variogram model...")
vp_temp = _make_variogram_parameter_list(self.variogram_model,
variogram_parameters)
self.lags, self.semivariance, self.variogram_model_parameters = \
_initialize_variogram_model(np.vstack((self.X_ADJUSTED,
self.Y_ADJUSTED)).T,
self.Z, self.variogram_model, vp_temp,
self.variogram_function, nlags,
weight, self.coordinates_type)
if self.verbose:
print("Coordinates type: '%s'" % self.coordinates_type, '\n')
if self.variogram_model == 'linear':
print("Using '%s' Variogram Model" % 'linear')
print("Slope:", self.variogram_model_parameters[0])
print("Nugget:", self.variogram_model_parameters[1], '\n')
elif self.variogram_model == 'power':
print("Using '%s' Variogram Model" % 'power')
print("Scale:", self.variogram_model_parameters[0])
print("Exponent:", self.variogram_model_parameters[1])
print("Nugget:", self.variogram_model_parameters[2], '\n')
elif self.variogram_model == 'custom':
print("Using Custom Variogram Model")
else:
print("Using '%s' Variogram Model" % self.variogram_model)
print("Partial Sill:", self.variogram_model_parameters[0])
print("Full Sill:", self.variogram_model_parameters[0] +
self.variogram_model_parameters[2])
print("Range:", self.variogram_model_parameters[1])
print("Nugget:", self.variogram_model_parameters[2], '\n')
if self.enable_plotting:
self.display_variogram_model()
if self.verbose:
print("Calculating statistics on variogram model fit...")
if enable_statistics:
self.delta, self.sigma, self.epsilon = \
_find_statistics(np.vstack((self.X_ADJUSTED,
self.Y_ADJUSTED)).T,
self.Z, self.variogram_function,
self.variogram_model_parameters,
self.coordinates_type)
self.Q1 = core.calcQ1(self.epsilon)
self.Q2 = core.calcQ2(self.epsilon)
self.cR = core.calc_cR(self.Q2, self.sigma)
if self.verbose:
print("Q1 =", self.Q1)
print("Q2 =", self.Q2)
print("cR =", self.cR, '\n')
else:
self.delta, self.sigma, self.epsilon, self.Q1, self.Q2, self.cR = [None]*6
def update_variogram_model(self, variogram_model, variogram_parameters=None,
variogram_function=None, nlags=6, weight=False,
anisotropy_scaling=1., anisotropy_angle=0.):
"""Allows user to update variogram type and/or
variogram model parameters.
Parameters
__________
variogram_model (string): May be any of the variogram models listed
above. May also be 'custom', in which case variogram_parameters
and variogram_function must be specified.
variogram_parameters (list or dict, optional): List or dict of
variogram model parameters, as explained above. If not provided,
a best fit model will be calculated as described above.
variogram_function (callable, optional): A callable function that must
be provided if variogram_model is specified as 'custom'.
See above for more information.
nlags (int, optional): Number of averaging bins for the semivariogram.
Default is 6.
weight (boolean, optional): Flag that specifies if semivariance at
smaller lags should be weighted more heavily when automatically
calculating the variogram model. See above for more information.
True indicates that weights will be applied. Default is False.
anisotropy_scaling (float, optional): Scalar stretching value to
take into account anisotropy. Default is 1 (effectively no
stretching). Scaling is applied in the y-direction.
anisotropy_angle (float, optional): CCW angle (in degrees) by
which to rotate coordinate system in order to take into
account anisotropy. Default is 0 (no rotation).
"""
if anisotropy_scaling != self.anisotropy_scaling or \
anisotropy_angle != self.anisotropy_angle:
if self.coordinates_type == 'euclidean':
if self.verbose:
print("Adjusting data for anisotropy...")
self.anisotropy_scaling = anisotropy_scaling
self.anisotropy_angle = anisotropy_angle
self.X_ADJUSTED, self.Y_ADJUSTED = \
_adjust_for_anisotropy(np.vstack((self.X_ORIG, self.Y_ORIG)).T,
[self.XCENTER, self.YCENTER],
[self.anisotropy_scaling],
[self.anisotropy_angle]).T
elif self.coordinates_type == 'geographic':
if anisotropy_scaling != 1.0:
warnings.warn("Anisotropy is not compatible with geographic"
" coordinates. Ignoring user set anisotropy.",
UserWarning)
self.anisotropy_scaling = 1.0
self.anisotropy_angle = 0.0
self.X_ADJUSTED = self.X_ORIG
self.Y_ADJUSTED = self.Y_ORIG
self.variogram_model = variogram_model
if self.variogram_model not in self.variogram_dict.keys() and self.variogram_model != 'custom':
raise ValueError("Specified variogram model '%s' is not supported." % variogram_model)
elif self.variogram_model == 'custom':
if variogram_function is None or not callable(variogram_function):
raise ValueError("Must specify callable function for custom variogram model.")
else:
self.variogram_function = variogram_function
else:
self.variogram_function = self.variogram_dict[self.variogram_model]
if self.verbose:
print("Updating variogram mode...")
# See note above about the 'use_psill' kwarg...
vp_temp = _make_variogram_parameter_list(self.variogram_model,
variogram_parameters)
self.lags, self.semivariance, self.variogram_model_parameters = \
_initialize_variogram_model(np.vstack((self.X_ADJUSTED,
self.Y_ADJUSTED)).T,
self.Z, self.variogram_model, vp_temp,
self.variogram_function, nlags,
weight, self.coordinates_type)
if self.verbose:
print("Coordinates type: '%s'" % self.coordinates_type, '\n')
if self.variogram_model == 'linear':
print("Using '%s' Variogram Model" % 'linear')
print("Slope:", self.variogram_model_parameters[0])
print("Nugget:", self.variogram_model_parameters[1], '\n')
elif self.variogram_model == 'power':
print("Using '%s' Variogram Model" % 'power')
print("Scale:", self.variogram_model_parameters[0])
print("Exponent:", self.variogram_model_parameters[1])
print("Nugget:", self.variogram_model_parameters[2], '\n')
elif self.variogram_model == 'custom':
print("Using Custom Variogram Model")
else:
print("Using '%s' Variogram Model" % self.variogram_model)
print("Partial Sill:", self.variogram_model_parameters[0])
print("Full Sill:", self.variogram_model_parameters[0] +
self.variogram_model_parameters[2])
print("Range:", self.variogram_model_parameters[1])
print("Nugget:", self.variogram_model_parameters[2], '\n')
if self.enable_plotting:
self.display_variogram_model()
if self.verbose:
print("Calculating statistics on variogram model fit...")
self.delta, self.sigma, self.epsilon = \
_find_statistics(np.vstack((self.X_ADJUSTED, self.Y_ADJUSTED)).T,
self.Z, self.variogram_function,
self.variogram_model_parameters,
self.coordinates_type)
self.Q1 = core.calcQ1(self.epsilon)
self.Q2 = core.calcQ2(self.epsilon)
self.cR = core.calc_cR(self.Q2, self.sigma)
if self.verbose:
print("Q1 =", self.Q1)
print("Q2 =", self.Q2)
print("cR =", self.cR, '\n')
def display_variogram_model(self):
"""Displays variogram model with the actual binned data."""
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(self.lags, self.semivariance, 'r*')
ax.plot(self.lags,
self.variogram_function(self.variogram_model_parameters,
self.lags), 'k-')
plt.show()
def get_variogram_points(self):
"""Returns both the lags and the variogram function evaluated at each
of them.
The evaluation of the variogram function and the lags are produced
internally. This method is convenient when the user wants to access to
the lags and the resulting variogram (according to the model provided)
for further analysis.
Returns
-------
(tuple) tuple containing:
lags (array) - the lags at which the variogram was evaluated
variogram (array) - the variogram function evaluated at the lags
"""
return self.lags, self.variogram_function(self.variogram_model_parameters, self.lags)
def switch_verbose(self):
"""Allows user to switch code talk-back on/off. Takes no arguments."""
self.verbose = not self.verbose
def switch_plotting(self):
"""Allows user to switch plot display on/off. Takes no arguments."""
self.enable_plotting = not self.enable_plotting
def get_epsilon_residuals(self):
"""Returns the epsilon residuals for the variogram fit."""
return self.epsilon
def plot_epsilon_residuals(self):
"""Plots the epsilon residuals for the variogram fit."""
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(range(self.epsilon.size), self.epsilon, c='k', marker='*')
ax.axhline(y=0.0)
plt.show()
def get_statistics(self):
"""Returns the Q1, Q2, and cR statistics for the variogram fit
(in that order). No arguments.
"""
return self.Q1, self.Q2, self.cR
def print_statistics(self):
"""Prints out the Q1, Q2, and cR statistics for the variogram fit.
NOTE that ideally Q1 is close to zero, Q2 is close to 1,
and cR is as small as possible.
"""
print("Q1 =", self.Q1)
print("Q2 =", self.Q2)
print("cR =", self.cR)
def _get_kriging_matrix(self, n):
"""Assembles the kriging matrix."""
if self.coordinates_type == 'euclidean':
xy = np.concatenate((self.X_ADJUSTED[:, np.newaxis],
self.Y_ADJUSTED[:, np.newaxis]), axis=1)
d = cdist(xy, xy, 'euclidean')
elif self.coordinates_type == 'geographic':
d = core.great_circle_distance(self.X_ADJUSTED[:,np.newaxis],
self.Y_ADJUSTED[:,np.newaxis],
self.X_ADJUSTED, self.Y_ADJUSTED)
a = np.zeros((n+1, n+1))
a[:n, :n] = - self.variogram_function(self.variogram_model_parameters,
d)
np.fill_diagonal(a, 0.)
a[n, :] = 1.0
a[:, n] = 1.0
a[n, n] = 0.0
return a
def _exec_vector(self, a, bd, mask):
"""Solves the kriging system as a vectorized operation. This method
can take a lot of memory for large grids and/or large datasets."""
npt = bd.shape[0]
n = self.X_ADJUSTED.shape[0]
zero_index = None
zero_value = False
a_inv = scipy.linalg.inv(a)
if np.any(np.absolute(bd) <= self.eps):
zero_value = True
zero_index = np.where(np.absolute(bd) <= self.eps)
b = np.zeros((npt, n+1, 1))
b[:, :n, 0] = - self.variogram_function(self.variogram_model_parameters, bd)
if zero_value:
b[zero_index[0], zero_index[1], 0] = 0.0
b[:, n, 0] = 1.0
if (~mask).any():
mask_b = np.repeat(mask[:, np.newaxis, np.newaxis], n+1, axis=1)
b = np.ma.array(b, mask=mask_b)
x = np.dot(a_inv, b.reshape((npt, n+1)).T).reshape((1, n+1, npt)).T
zvalues = np.sum(x[:, :n, 0] * self.Z, axis=1)
sigmasq = np.sum(x[:, :, 0] * -b[:, :, 0], axis=1)
return zvalues, sigmasq
def _exec_loop(self, a, bd_all, mask):
"""Solves the kriging system by looping over all specified points.
Less memory-intensive, but involves a Python-level loop."""
npt = bd_all.shape[0]
n = self.X_ADJUSTED.shape[0]
zvalues = np.zeros(npt)
sigmasq = np.zeros(npt)
a_inv = scipy.linalg.inv(a)
for j in np.nonzero(~mask)[0]: # Note that this is the same thing as range(npt) if mask is not defined,
bd = bd_all[j] # otherwise it takes the non-masked elements.
if np.any(np.absolute(bd) <= self.eps):
zero_value = True
zero_index = np.where(np.absolute(bd) <= self.eps)
else:
zero_index = None
zero_value = False
b = np.zeros((n+1, 1))
b[:n, 0] = - self.variogram_function(self.variogram_model_parameters, bd)
if zero_value:
b[zero_index[0], 0] = 0.0
b[n, 0] = 1.0
x = np.dot(a_inv, b)
zvalues[j] = np.sum(x[:n, 0] * self.Z)
sigmasq[j] = np.sum(x[:, 0] * -b[:, 0])
return zvalues, sigmasq
def _exec_loop_moving_window(self, a_all, bd_all, mask, bd_idx):
"""Solves the kriging system by looping over all specified points.
Less memory-intensive, but involves a Python-level loop."""
import scipy.linalg.lapack
npt = bd_all.shape[0]
n = bd_idx.shape[1]
zvalues = np.zeros(npt)
sigmasq = np.zeros(npt)
for i in np.nonzero(~mask)[0]: # Note that this is the same thing as range(npt) if mask is not defined,
b_selector = bd_idx[i] # otherwise it takes the non-masked elements.
bd = bd_all[i]
a_selector = np.concatenate((b_selector, np.array([a_all.shape[0] - 1])))
a = a_all[a_selector[:, None], a_selector]
if np.any(np.absolute(bd) <= self.eps):
zero_value = True
zero_index = np.where(np.absolute(bd) <= self.eps)
else:
zero_index = None
zero_value = False
b = np.zeros((n+1, 1))
b[:n, 0] = - self.variogram_function(self.variogram_model_parameters, bd)
if zero_value:
b[zero_index[0], 0] = 0.0
b[n, 0] = 1.0
x = scipy.linalg.solve(a, b)
zvalues[i] = x[:n, 0].dot(self.Z[b_selector])
sigmasq[i] = - x[:, 0].dot(b[:, 0])
return zvalues, sigmasq
def execute(self, style, xpoints, ypoints, mask=None, backend='vectorized',
n_closest_points=None):
"""Calculates a kriged grid and the associated variance.
This is now the method that performs the main kriging calculation.
Note that currently measurements (i.e., z values) are considered
'exact'. This means that, when a specified coordinate for interpolation
is exactly the same as one of the data points, the variogram evaluated
at the point is forced to be zero. Also, the diagonal of the kriging
matrix is also always forced to be zero. In forcing the variogram
evaluated at data points to be zero, we are effectively saying that
there is no variance at that point (no uncertainty,
so the value is 'exact').
In the future, the code may include an extra 'exact_values' boolean
flag that can be adjusted to specify whether to treat the measurements
as 'exact'. Setting the flag to false would indicate that the
variogram should not be forced to be zero at zero distance
(i.e., when evaluated at data points). Instead, the uncertainty in
the point will be equal to the nugget. This would mean that the
diagonal of the kriging matrix would be set to
the nugget instead of to zero.
Parameters
----------
style : str
Specifies how to treat input kriging points. Specifying 'grid'
treats xpoints and ypoints as two arrays of x and y coordinates
that define a rectangular grid. Specifying 'points' treats
xpoints and ypoints as two arrays that provide coordinate pairs
at which to solve the kriging system. Specifying 'masked'
treats xpoints and ypoints as two arrays of x and y coordinates
that define a rectangular grid and uses mask to only evaluate
specific points in the grid.
xpoints : array_like, shape (N,) or (N, 1)
If style is specific as 'grid' or 'masked',
x-coordinates of MxN grid. If style is specified as 'points',
x-coordinates of specific points at which to solve
kriging system.
ypoints : array_like, shape (M,) or (M, 1)
If style is specified as 'grid' or 'masked',
y-coordinates of MxN grid. If style is specified as 'points',
y-coordinates of specific points at which to solve kriging
system. Note that in this case, xpoints and ypoints must have
the same dimensions (i.e., M = N).
mask : bool, array_like, shape (M, N), optional
Specifies the points in the rectangular grid defined
by xpoints and ypoints that are to be excluded in the
kriging calculations. Must be provided if style is specified
as 'masked'. False indicates that the point should not be
masked, so the kriging system will be solved at the point.
True indicates that the point should be masked, so the kriging
system should will not be solved at the point.
backend : str, optional
Specifies which approach to use in kriging.
Specifying 'vectorized' will solve the entire kriging problem
at once in a vectorized operation. This approach is faster but
also can consume a significant amount of memory for large grids
and/or large datasets. Specifying 'loop' will loop through each
point at which the kriging system is to be solved.
This approach is slower but also less memory-intensive.
Specifying 'C' will utilize a loop in Cython.
Default is 'vectorized'.
n_closest_points : int, optional
For kriging with a moving window, specifies the number of
nearby points to use in the calculation. This can speed up the
calculation for large datasets, but should be used
with caution. As Kitanidis notes, kriging with a moving window
can produce unexpected oddities if the variogram model
is not carefully chosen.
Returns
-------
zvalues : ndarray, shape (M, N) or (N, 1)
Z-values of specified grid or at the specified set of points.
If style was specified as 'masked', zvalues will
be a numpy masked array.
sigmasq : ndarray, shape (M, N) or (N, 1)
Variance at specified grid points or at the specified
set of points. If style was specified as 'masked', sigmasq
will be a numpy masked array.
"""
if self.verbose:
print("Executing Ordinary Kriging...\n")
if style != 'grid' and style != 'masked' and style != 'points':
raise ValueError("style argument must be 'grid', "
"'points', or 'masked'")
if n_closest_points is not None and n_closest_points <= 1:
# If this is not checked, nondescriptive errors emerge
# later in the code.
raise ValueError("n_closest_points has to be at least two!")
xpts = np.atleast_1d(np.squeeze(np.array(xpoints, copy=True)))
ypts = np.atleast_1d(np.squeeze(np.array(ypoints, copy=True)))
n = self.X_ADJUSTED.shape[0]
nx = xpts.size
ny = ypts.size
a = self._get_kriging_matrix(n)
if style in ['grid', 'masked']:
if style == 'masked':
if mask is None:
raise IOError("Must specify boolean masking array "
"when style is 'masked'.")
if mask.shape[0] != ny or mask.shape[1] != nx:
if mask.shape[0] == nx and mask.shape[1] == ny:
mask = mask.T
else:
raise ValueError("Mask dimensions do not match "
"specified grid dimensions.")
mask = mask.flatten()
npt = ny*nx
grid_x, grid_y = np.meshgrid(xpts, ypts)
xpts = grid_x.flatten()
ypts = grid_y.flatten()
elif style == 'points':
if xpts.size != ypts.size:
raise ValueError("xpoints and ypoints must have "
"same dimensions when treated as "
"listing discrete points.")
npt = nx
else:
raise ValueError("style argument must be 'grid', "
"'points', or 'masked'")
if self.coordinates_type == 'euclidean':
xpts, ypts = _adjust_for_anisotropy(np.vstack((xpts, ypts)).T,
[self.XCENTER, self.YCENTER],
[self.anisotropy_scaling],
[self.anisotropy_angle]).T
# Prepare for cdist:
xy_data = np.concatenate((self.X_ADJUSTED[:, np.newaxis],
self.Y_ADJUSTED[:, np.newaxis]), axis=1)
xy_points = np.concatenate((xpts[:, np.newaxis],
ypts[:, np.newaxis]), axis=1)
elif self.coordinates_type == 'geographic':
# In spherical coordinates, we do not correct for anisotropy.
# Also, we don't use scipy.spatial.cdist, so we do not have to
# format the input data accordingly.
pass
if style != 'masked':
mask = np.zeros(npt, dtype='bool')
c_pars = None
if backend == 'C':
try:
from .lib.cok import _c_exec_loop, _c_exec_loop_moving_window
except ImportError:
print('Warning: failed to load Cython extensions.\n'
' See https://github.com/bsmurphy/PyKrige/issues/8 \n'
' Falling back to a pure python backend...')
backend = 'loop'
except:
raise RuntimeError("Unknown error in trying to "
"load Cython extension.")
c_pars = {key: getattr(self, key) for key in ['Z', 'eps', 'variogram_model_parameters', 'variogram_function']}
if n_closest_points is not None:
if self.coordinates_type == 'geographic':
# To make use of the KDTree, we have to convert the
# spherical coordinates into three dimensional Euclidean
# coordinates, since the standard KDTree cannot handle
# the periodicity.
# Do the conversion just for the step involving the KDTree:
lon_d = self.X_ADJUSTED[:, np.newaxis] * np.pi / 180.0
lat_d = self.Y_ADJUSTED[:, np.newaxis] * np.pi / 180.0
xy_data = np.concatenate((np.cos(lon_d) * np.cos(lat_d),
np.sin(lon_d) * np.cos(lat_d),
np.sin(lat_d)), axis=1)
lon_p = xpts[:, np.newaxis] * np.pi / 180.0
lat_p = ypts[:, np.newaxis] * np.pi / 180.0
xy_points = np.concatenate((np.cos(lon_p) * np.cos(lat_p),
np.sin(lon_p) * np.cos(lat_p),
np.sin(lat_p)), axis=1)
from scipy.spatial import cKDTree
tree = cKDTree(xy_data)
bd, bd_idx = tree.query(xy_points, k=n_closest_points, eps=0.0)
if self.coordinates_type == 'geographic':
# Between the nearest neighbours from Euclidean search,
# calculate the great circle distance using the standard method:
x_points = np.tile(xpts[:,np.newaxis],(1,n_closest_points))
y_points = np.tile(ypts[:,np.newaxis],(1,n_closest_points))
bd = core.great_circle_distance(x_points, y_points,
self.X_ADJUSTED[bd_idx],
self.Y_ADJUSTED[bd_idx])
if backend == 'loop':
zvalues, sigmasq = \
self._exec_loop_moving_window(a, bd, mask, bd_idx)
elif backend == 'C':
zvalues, sigmasq = \
_c_exec_loop_moving_window(a, bd, mask.astype('int8'),
bd_idx, self.X_ADJUSTED.shape[0],
c_pars)
else:
raise ValueError('Specified backend {} for a moving window '
'is not supported.'.format(backend))
else:
if self.coordinates_type == 'euclidean':
bd = cdist(xy_points, xy_data, 'euclidean')
elif self.coordinates_type == 'geographic':
bd = core.great_circle_distance(xpts[:,np.newaxis],
ypts[:,np.newaxis],
self.X_ADJUSTED, self.Y_ADJUSTED)
if backend == 'vectorized':
zvalues, sigmasq = self._exec_vector(a, bd, mask)
elif backend == 'loop':
zvalues, sigmasq = self._exec_loop(a, bd, mask)
elif backend == 'C':
zvalues, sigmasq = _c_exec_loop(a, bd, mask.astype('int8'),
self.X_ADJUSTED.shape[0],
c_pars)
else:
raise ValueError('Specified backend {} is not supported for '
'2D ordinary kriging.'.format(backend))
if style == 'masked':
zvalues = np.ma.array(zvalues, mask=mask)
sigmasq = np.ma.array(sigmasq, mask=mask)
if style in ['masked', 'grid']:
zvalues = zvalues.reshape((ny, nx))
sigmasq = sigmasq.reshape((ny, nx))
return zvalues, sigmasq