forked from clcarwin/sphereface_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
130 lines (111 loc) · 5.47 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from __future__ import print_function
import os
import time
import random
import numpy as np
import ctypes
from multiprocessing import Process,Queue,Array
def numpy_to_share(index,image,label,nparrimage,nparrlabel):
nparrimage[index,0:image.size] = image.reshape(-1)[0:image.size]
nparrlabel[index,0:label.size] = label.reshape(-1)[0:label.size]
def return_batchdata(result,imagelist,labellist,pathlist,freearr,nparrimage,nparrlabel):
index = freearr.get() # wait for free index
image = np.vstack(imagelist)
label = np.vstack(labellist)
numpy_to_share(index,image,label,nparrimage,nparrlabel)
result.put((index,image.shape,label.shape,list(pathlist)))
del imagelist[:]
del labellist[:]
del pathlist[:]
def dataset_handle(name,filelist,result,callback,bs,pindex,freearr,arrimage,arrlabel,zfile):
cacheobj = type('', (), {})
imagelist = []
labellist = []
pathlist = []
nparrimage = np.frombuffer(arrimage.get_obj(),np.float32).reshape(10,len(arrimage)/10)
nparrlabel = np.frombuffer(arrlabel.get_obj(),np.float32).reshape(10,len(arrlabel)/10)
while True:
filename = filelist.get()
if filename.endswith('\n'): filename=filename[:-1]
if filename=='FINISH': break
data = callback(name,filename,pindex,cacheobj,zfile)
if data is not None:
imagelist.append(data[0])
labellist.append(data[1])
pathlist.append(filename)
if len(imagelist)==bs: return_batchdata(result,imagelist,labellist,pathlist,freearr,nparrimage,nparrlabel)
if len(imagelist)>0: return_batchdata(result,imagelist,labellist,pathlist,freearr,nparrimage,nparrlabel)
result.put(('FINISH','FINISH','FINISH','FINISH'))
class ImageDataset(object):
zipcache = {}
def __init__(self,imageroot,callback,imagelistfile=None,bs=1,shuffle=False,
nthread=4,name='',imagesize=128,pathinfo=False,maxlistnum=None):
self.callback = callback #callback(name,filename,pindex,cacheobj) result=(image,label) in np.array
self.bs = bs
self.shuffle = shuffle
self.nthread = nthread
self.name = name
self.arrimage = Array(ctypes.c_float, 10*bs*3*imagesize*imagesize)
self.arrlabel = Array(ctypes.c_float, 10*bs*3*imagesize*imagesize)
self.nparrimage = np.frombuffer(self.arrimage.get_obj(),np.float32).reshape(10,len(self.arrimage)/10)
self.nparrlabel = np.frombuffer(self.arrlabel.get_obj(),np.float32).reshape(10,len(self.arrlabel)/10)
self.filelist = Queue()
self.result = Queue()
self.freearr = Queue()
self.imagenum = 0
self.finishnum = 0
self.zfile = None
self.pathinfo = pathinfo
for i in range(10): self.freearr.put(i)
self.flist = []
if imagelistfile is None and os.path.isdir(imageroot):
for (dirpath, dirnames, filenames) in os.walk(imageroot):
for filename in filenames: self.flist.append(dirpath+'/'+filename)
else:
if os.path.isdir(imageroot): imageroot = imageroot + '/'
else:
imageroot = imageroot + ':'
if '.zip:' in imageroot:
import zipfile
zipfilepath = imageroot.split(':')[0]
if zipfilepath in ImageDataset.zipcache: self.zfile = ImageDataset.zipcache[zipfilepath]
else:
self.zfile = zipfile.ZipFile(zipfilepath)
ImageDataset.zipcache[zipfilepath] = self.zfile
if '.zip:' in imageroot and imagelistfile is None:
for zf in self.zfile.filelist: self.flist.append(imageroot+zf.filename)
elif '.zip:' in imagelistfile:
with self.zfile.open(imagelistfile.split(':')[1]) as f: lines = f.readlines()
for line in lines: self.flist.append(imageroot+line) # zippath:filename classname
else:
with open(imagelistfile) as f: lines = f.readlines()
for line in lines: self.flist.append(imageroot+line) # root/filepath classname || zippath:filename classname
self.imagenum = len(self.flist)
if self.shuffle: random.shuffle(self.flist)
for filepath in self.flist:
self.filelist.put(filepath)
if maxlistnum is not None: maxlistnum -= 1
if maxlistnum==0: break
for i in range(nthread):
self.filelist.put('FINISH')
p = Process(target=dataset_handle, args=(self.name,self.filelist,self.result,self.callback,self.bs,i,
self.freearr,self.arrimage,self.arrlabel,self.zfile))
p.start()
def get(self):
while True:
index,imageshape,labelshape,pathlist = self.result.get()
if type(index)==str and index=='FINISH':
self.finishnum += 1
if self.finishnum==self.nthread:
if self.pathinfo: return (None,None,None)
else: return (None,None)
else: continue
imagesize = np.prod(imageshape)
labelsize = np.prod(labelshape)
image = np.empty(imageshape,np.float32)
label = np.empty(labelshape,np.float32)
image.reshape(imagesize)[:] = self.nparrimage[index,0:imagesize]
label.reshape(labelsize)[:] = self.nparrlabel[index,0:labelsize]
self.freearr.put(index)
if self.pathinfo: return (image,label,pathlist)
else: return (image,label)