forked from uva-hydroinformatics/wetland_id
-
Notifications
You must be signed in to change notification settings - Fork 0
/
class_acc_funcs.py
415 lines (303 loc) · 17.5 KB
/
class_acc_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# -*- coding: utf-8 -*-
"""
This program executes a train/test split, random forest classification, and accuracy assessment.
Authors: Gina O'Neil and Linnea Saby
Changelog: 20180323: Initial version
"""
from sklearn.ensemble import RandomForestClassifier
from osgeo import gdal, gdal_array
import numpy as np
from sklearn import metrics
from sklearn import model_selection
from sklearn.metrics import *
import os
import matplotlib.pyplot as plt
import sys
import pandas as pd
import re
from io import StringIO
import ntpath
import time
import scipy
from scipy import stats
import subprocess
import wetland_id_defaults as default
from raster_array_funcs import *
import matplotlib.pyplot as plt
def create_tt_labels(verif_tif, w_train_prop, nw_train_prop, out_dir):
verif_arr, verif_meta = geotif_to_array(verif_tif)
verif_int = verif_arr.astype(int) #make sure there are 2 unqiue values - wetland (0) and nonwetland (1)
verif_data = clean_array(verif_int)
"""
input_feat = input features that will be used to differentiate between true land classes, \
should be array-like where dimensions correspond to feature categories
verif_data = verification data that is used to create training and testing data
w_train_prop, nw_train_prop = float between 0.0 and 1.0 that represents the proportion of the wetland
and nonwetland samples that will be used for training, the complement of these variables will \
be the testing size
"""
print "Creating training and testing data..." + '\n'
"""Training and testing LABEL creation (0s and 1s)"""
#wetlands = 0 and nonwetlands = 1 in verificaiton dataset
w_all = np.ma.masked_values(verif_data, 1.)
nw_all = np.ma.masked_values(verif_data, 0.)
print np.unique(w_all), np.unique(nw_all)
#flatten arrays to simplify processing
w_all_flat = w_all.flatten()
nw_all_flat = nw_all.flatten()
print np.unique(w_all_flat), np.unique(nw_all_flat)
#get all wetland indices (ie, cannot choose from masked/NaN elements)
w_indices = np.where(w_all_flat == 0)
nw_indices = np.where(nw_all_flat == 1)
#get total number of wetland and nonwetland features and calculate number of samples needed
w_total = float(len(w_indices[0]))
w_train_n = float(w_train_prop * w_total)
nw_total = float(len(nw_indices[0]))
nw_train_n = float(nw_train_prop * nw_total)
print "Total number of verification wetland samples: %d" %(int(w_total)) + '\n'
print "Total number of verification nonwetland samples %d" %(int(nw_total)) + '\n'
#choose random indices from wetland and nonwetland arrays to use for training
#NOTE: np.where returns a list of data, first index is the array we want
w_rand_indices = np.random.choice(w_indices[0], size = int(w_train_n), replace = False)
nw_rand_indices = np.random.choice(nw_indices[0], size = int(nw_train_n), replace = False)
#create empty boolean arrays where all elements are False
w_temp_bool = np.zeros(w_all_flat.shape, bool)
nw_temp_bool = np.zeros(nw_all_flat.shape, bool)
#make elements True where the random indices exist
w_temp_bool[w_rand_indices] = True
nw_temp_bool[nw_rand_indices] = True
#training samples are created from true values of the random indices
w_train = np.ma.masked_where(w_temp_bool == False, w_all_flat)
nw_train = np.ma.masked_where(nw_temp_bool == False, nw_all_flat)
#testing samples are created from the false values of the random indices (complement)
w_test = np.ma.masked_where(w_temp_bool == True, w_all_flat)
nw_test = np.ma.masked_where(nw_temp_bool == True, nw_all_flat)
w_train_flt, nw_train_flt = w_train.astype(float), nw_train.astype(float)
w_test_flt, nw_test_flt = w_test.astype(float), nw_test.astype(float)
#convert masked elements to NaN
w_train_nans = np.ma.filled(w_train_flt, np.nan)
nw_train_nans = np.ma.filled(nw_train_flt, np.nan)
w_test_nans = np.ma.filled(w_test_flt, np.nan)
nw_test_nans = np.ma.filled(nw_test_flt, np.nan)
#combine training wetlands and nonwetladns into a single array, reshape to write as geotiff
train_labels = np.where(~np.isnan(nw_train_nans), nw_train_nans, w_train_nans)
#combine testing wetlands and nonwetlands into a single array, reshape to write as geotiff
test_labels = np.where(~np.isnan(nw_test_nans), nw_test_nans, w_test_nans)
#stats
true_ratio = float(w_total / nw_total)
train_ratio = float(w_train_n / nw_train_n)
print "True wetlands to nonwetlands ratio: %.3f" %(true_ratio) +'\n'
print "Training wetlands to nonwetlands ratio: %.3f" %(train_ratio) +'\n'
train_labels_2d = np.reshape(train_labels, (verif_data.shape[0], verif_data.shape[1]))
test_labels_2d = np.reshape(test_labels, (verif_data.shape[0], verif_data.shape[1]))
train_labels_tif = array_to_geotif(train_labels_2d, verif_meta, out_dir, "train_w%.3f_nw%.3f.tif" %(w_train_prop, nw_train_prop))
test_labels_tif = array_to_geotif(test_labels_2d, verif_meta, out_dir,"test_w%.3f_nw%.3f.tif" %(float(1-w_train_prop), float(1-nw_train_prop)))
return train_labels_2d, test_labels_2d
def create_tt_feats(input_feat, train_labels_2d, test_labels_2d, out_dir):
feat_arr, feat_meta = geotif_to_array(input_feat)
feat_clean = clean_array(feat_arr)
feat_arr = np.ma.filled(feat_clean, np.nan)
out_base = input_feat.split('\\')[-1]
train_fname = out_base[:-4] + "train_feats.tif"
test_fname = out_base[:-4] + "test_feats.tif"
"""Training and testing FEATURES creation (input variables that are labeled either 0 or 1)"""
#create arrays of input variables within training and testing limits
train_features = np.copy(feat_arr)
test_features = np.copy(feat_arr)
train_features[np.isnan(train_labels_2d), : ] = np.nan
test_features[np.isnan(test_labels_2d), : ] = np.nan
train_feat_tif = array_to_geotif(train_features,feat_meta, out_dir, train_fname)
test_feat_tif = array_to_geotif(test_features, feat_meta, out_dir, test_fname)
return train_features, test_features
def classify(train_features, train_labels_2d, test_features, n_trees, tree_depth, wcw, nwcw):
#Initialize RF model
print "Initializing Random Forest model with:"
print "%d trees" %(n_trees)
print "%s max tree depth" %str(tree_depth)
print "class weights: W = %s | NW = %s" %(str(wcw), str(nwcw)) + '\n'
if type(wcw) is int:
rf_clf = RandomForestClassifier( n_estimators = n_trees, max_depth = tree_depth, \
oob_score = True, n_jobs = default.n_proc, class_weight = { '0' : wcw, '1' : nwcw },\
max_features = 'auto', random_state = 21 )
else:
rf_clf = RandomForestClassifier( n_estimators = n_trees, max_depth = tree_depth, \
oob_score = True, n_jobs = default.n_proc, class_weight = 'balanced',\
max_features = 'auto', random_state = 21 )
#train RF model
train_X = train_features[~np.isnan(train_features[:, :, 0]), :]
train_Y = train_labels_2d[~np.isnan(train_features[:, :, 0])]
# train_Y = train_labels_2d[~np.isnan(train_labels_2d)]
train_Y1 = train_Y.astype(int)
train_Y2 = train_Y1.astype(str)
#train_X is an array of nonNaN values from train_features, 3D array --> 2D array ([X*Y, Z])
#train_Y is an array of nonNaN values from train_labels, 2D array --> 1D array (X*Y)
#both have NO NaN VALUES, which is required for sklearn rf
print "Training model..."
rf_fit = rf_clf.fit(train_X, train_Y2)
#save feature importance
n_feats = len(rf_fit.feature_importances_)
importance=[]
bands = np.arange(1, n_feats+1)
for b, imp in zip(bands, rf_fit.feature_importances_):
print('Band {b} importance: {imp}'.format(b=b, imp=imp.round(3)))
importance.append('Band {b} importance: {imp} \n'.format(b=b, imp=imp.round(3)))
#execute RF classification and fuzzy classification
#cannot delete NaN values of test_features, because we will not be able to export to geotiff with extents of original ROI
#convert test_features to 2D and fill nan values with other # (-9999)
test_feat_masked = np.ma.masked_invalid(test_features)
test_feat_nonan = np.ma.filled(test_feat_masked, -9999.) #still 3D
temp_shape = ( test_feat_nonan.shape[0] * test_feat_nonan.shape[1], test_feat_nonan.shape[2] )
test_shaped = test_feat_nonan[:, :, :].reshape(temp_shape)
#the array used in rf.predict() and rf.predict_proba() MUST be the same size as the original ROI, eventhough those extents include
#many NAN values. Here, we assign a dummy value (-9999) to NaN locations to maintain shape. There is no training data for these
#values, so the accuracy for this class should be zero but not affect the accuracy of W/NW classes
print "\n" + "Executing prediction...\n"
rf_predict = rf_fit.predict(test_shaped)
fuzzy_predict = rf_fit.predict_proba(test_shaped)
#reshape outputs to prepare for geotif export
rf_predict = rf_predict.reshape(test_features[:, :, 0].shape)
fuzzy_predict_w = fuzzy_predict[:,0].reshape(test_features[:, :, 0].shape)
return rf_predict, fuzzy_predict_w, importance
def get_acc(test_labels_2d, rf_predict, fuzzy_predict_w, importance, fname, results_dir, data_meta, units = None):
#flatten 2d arrays and mask NaN, must be int for confusion matrix
#test_labels_2D already has nan values...so these are masked
tl_flat = test_labels_2d.flatten()
tl_nonans = tl_flat[~np.isnan(tl_flat)]
tl = tl_nonans.astype(int) #true labels
pv_flat = rf_predict.flatten()
pv_nonans = pv_flat[~np.isnan(tl_flat)]
pv = pv_nonans.astype(int) #predicted values
fuzz_flat = fuzzy_predict_w.flatten()
fuzz_nonans = fuzz_flat[~np.isnan(tl_flat)] #fuzzy predictions for wetland class (=0)
print "Performing accuracy assessment... \n"
conf_matrix_pix= confusion_matrix(tl, pv)
#accuracy
acc_score= accuracy_score(tl, pv)
#specificity
specificity = recall_score(tl, pv, pos_label = 1) #use recall to get specificity, pos lable here is a lie
#fbeta score
fbeta = fbeta_score(tl, pv, beta = default.beta, pos_label = 0)
#Compute AU Precision Recall Curve (average precision by sklearn)
#do some funky stuff to make sklearn recognize positive class
tl_temp = np.copy(tl)
tl_temp[tl_temp == 1] = 0 #switch 0s and 1s because sklearn average precision method defaults positive class to 1
tl_temp[tl == 0] = 1
ap_score = average_precision_score(tl_temp, fuzz_nonans, average='weighted')
precision, recall, thresholds = precision_recall_curve(tl, fuzz_nonans, pos_label = 0)
auc_pr = auc(recall, precision)
plt.step(recall, precision, color='b', alpha=0.2, where='post')
plt.fill_between(recall, precision, step='post', alpha=0.2, color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title('2-class Precision-Recall curve: AP={0:0.2f}'.format(ap_score))
prc_out = 'prec_rec_curve.png'
plt.savefig(prc_out, dpi = 300)
print "Average Precision Recall score (or Area Under Precision Recall Curve): %f \n" %(ap_score)
#Get ROC
fpr, tpr, thresholds = roc_curve(tl, fuzz_nonans, pos_label = 0)
auroc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw = 2, label = 'ROC curve (area = %0.2f)' % auroc)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title('ROC Curve')
plt.legend(loc="lower right")
roc_out = 'roc.png'
plt.savefig(roc_out, dpi = 300)
plt.show()
class_report = metrics.classification_report(tl, pv)
print class_report
print " Accuracy Score: %f \n Specificity: %f \n F%.1f Score: %f\n AP Score: %f \n" \
%(acc_score, specificity, default.beta, fbeta, ap_score)
print "Writing results to file... \n"
#TODO: parse horizontal units from GDAL metadata info and pass to this function
x_res = data_meta['pix_res']
y_res = data_meta['pix_res']
#convert confusion matrix to sq km
conf_matrix_pix= conf_matrix_pix.astype(float)
if units:
mult= 1
units= 'square %s'%units
else:
mult=.001**2
units= 'square km'
conf_matrix_area=conf_matrix_pix*x_res*y_res*mult
#add column and row labels
confusion_matrix_pd1= pd.DataFrame(conf_matrix_area, index=['actual wetlands (%s)'%(units),'actual nonwetlands (%s)'%(units)],
columns=['predicted wetlands (%s)'%(units), 'predicted nonwetlands (%s)'%(units)])
confusion_matrix_pd= confusion_matrix_pd1.round(4)
confusion_matrix_pd.loc[u'Σ']= confusion_matrix_pd.sum()
confusion_matrix_pd[u'Σ'] = confusion_matrix_pd.sum(axis=0)
confusion_matrix_pd[u'Σ'] = confusion_matrix_pd.sum(axis=1)
#convert to series. Use strings to format % sign
acc_score_pd = pd.Series(acc_score, index=['Accuracy score:'])
acc_score_pd = acc_score_pd.round(4)
#add specificity
specificity_pd = pd.Series(specificity, index=['Specificity:'])
specificity_pd = specificity_pd.round(4)
#add F-beta score
fbeta_pd = pd.Series(fbeta, index=['F%.1f Score:' %(default.beta)])
fbeta_pd = fbeta_pd.round(4)
#add Average Precision (~Area under Precision Recall Curve)
ap_pd = pd.Series(ap_score, index=['Average Precision Score:'])
ap_pd = ap_pd.round(4)
#add Area Under ROC
auroc_pd = pd.Series(auroc, index=['Area Under ROC:'])
auroc_pd = auroc_pd.round(4)
imp_pd=pd.DataFrame(importance)
imp_pd=imp_pd.round(4)
acc_scores_all= acc_score_pd.append([specificity_pd, fbeta_pd, ap_pd, auroc_pd])
#send unicode classification report output to a pd.DataFrame
class_report = re.sub(r" +", " ", class_report).replace("avg / total", "avg/total").replace("\n ", "\n")
class_report_df = pd.read_csv(StringIO("Classes" + class_report), sep=' ', index_col=0)
p_r_df = pd.DataFrame({'precision': precision, 'recall': recall})
roc_df = pd.DataFrame({'TPR': tpr, 'FPR': fpr})
outfile_path = os.path.join(results_dir, fname)
print 'Accuracy report written to: '
print fname + '\n'
writer=pd.ExcelWriter(outfile_path)
confusion_matrix_pd.to_excel(writer, sheet_name = 'Output_accuracy_metrics', startrow=0)
class_report_df.to_excel(writer, sheet_name = 'Output_accuracy_metrics', header=True, startrow=6)
acc_scores_all.to_excel(writer, sheet_name = 'Output_accuracy_metrics', header=False, startrow=12)
imp_pd.to_excel(writer, sheet_name = 'Variable_Imp', header=False)
p_r_df.to_excel(writer, sheet_name = 'Performance_Curves', header=True, startrow=0)
roc_df.to_excel(writer, sheet_name = 'Performance_Curves', header=True, startrow=0, startcol = 3)
worksheet = writer.sheets['Performance_Curves']
worksheet.insert_image('H1', prc_out)
worksheet.insert_image('H21', roc_out)
writer.save()
print 'written to %s' %(fname)
return fname
def main(comp, verif_tif, results_dir = default.roi_results, n_trees = default.n_trees, \
tree_depth = default.tree_depth, wcw = default.wcw, nwcw = default.nwcw,\
w_train_prop = default.w_train_prop, nw_train_prop = default.nw_train_prop):
verif_arr, verif_meta = geotif_to_array(verif_tif)
nans = np.where(np.isnan(verif_arr))
train_labels_2d, test_labels_2d = create_tt_labels(verif_tif, w_train_prop, nw_train_prop, results_dir)
var_arr, var_meta = geotif_to_array(comp)
train_features, test_features = create_tt_feats(comp, train_labels_2d, test_labels_2d, results_dir)
rf_predict, fuzzy_predict_w, importance = classify(train_features, train_labels_2d,\
test_features, n_trees, tree_depth, wcw, nwcw)
rf_predict[nans] = np.nan
fuzzy_predict_w[nans] = np.nan
comp_base = comp.split('\\')[-1]
rf_results_name = "%s_rf_predict_w%.3f_nw%.3f_cws_%s_%s.tif" \
%(comp_base[:-4], 100*w_train_prop, 100*nw_train_prop, str(wcw), str(nwcw))
fuz_results_name = "%s_fuzzy_predict_w%.3f_nw%.3f_cws_%s_%s.tif" \
%(comp_base[:-4], 100*w_train_prop, 100*nw_train_prop, str(wcw), str(nwcw))
rf_out = array_to_geotif(rf_predict, verif_meta, results_dir, rf_results_name)
fuz_out = array_to_geotif(fuzzy_predict_w, verif_meta, results_dir, fuz_results_name)
results_fname = os.path.join(results_dir, "%s_w%.3f_nw%.3f_cws_%s_%s.xlsx" \
%(comp_base[:-4], 100*w_train_prop, 100*nw_train_prop, str(wcw), str(nwcw)))
results = get_acc(test_labels_2d, rf_predict, fuzzy_predict_w, importance, results_fname, results_dir, var_meta)
return rf_out, fuz_out, results
if __name__== '__main__':
time0= time.time()
main()
time1=time.time()
print 'runtime was: {time} seconds'.format(time=(time1-time0))
sys.exit(0)