forked from lezzago/LambdaMart
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
79 lines (71 loc) · 2.26 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from lambdamart import LambdaMART
import numpy as np
import pandas as pd
def get_data(file_loc):
f = open(file_loc, 'r')
data = []
for line in f:
new_arr = []
arr = line.split(' #')[0].split()
score = arr[0]
q_id = arr[1].split(':')[1]
new_arr.append(int(score))
new_arr.append(int(q_id))
arr = arr[2:]
for el in arr:
new_arr.append(float(el.split(':')[1]))
data.append(new_arr)
f.close()
return np.array(data)
def group_queries(data):
query_indexes = {}
index = 0
for record in data:
query_indexes.setdefault(record[1], [])
query_indexes[record[1]].append(index)
index += 1
return query_indexes
def main():
total_ndcg = 0.0
for i in [1,2,3,4,5]:
print 'start Fold ' + str(i)
training_data = get_data('Fold%d/train.txt' % (i))
test_data = get_data('Fold%d/test.txt' % (i))
model = LambdaMART(training_data, 300, 0.001, 'sklearn')
model.fit()
model.save('lambdamart_model_%d' % (i))
# model = LambdaMART()
# model.load('lambdamart_model.lmart')
average_ndcg, predicted_scores = model.validate(test_data, 10)
print average_ndcg
total_ndcg += average_ndcg
total_ndcg /= 5.0
print 'Original average ndcg at 10 is: ' + str(total_ndcg)
total_ndcg = 0.0
for i in [1,2,3,4,5]:
print 'start Fold ' + str(i)
training_data = get_data('Fold%d/train.txt' % (i))
test_data = get_data('Fold%d/test.txt' % (i))
model = LambdaMART(training_data, 300, 0.001, 'original')
model.fit()
model.save('lambdamart_model_sklearn_%d' % (i))
# model = LambdaMART()
# model.load('lambdamart_model.lmart')
average_ndcg, predicted_scores = model.validate(test_data, 10)
print average_ndcg
total_ndcg += average_ndcg
total_ndcg /= 5.0
print 'Sklearn average ndcg at 10 is: ' + str(total_ndcg)
# print 'NDCG score: %f' % (average_ndcg)
# query_indexes = group_queries(test_data)
# index = query_indexes.keys()[0]
# testdata = [test_data[i][0] for i in query_indexes[index]]
# pred = [predicted_scores[i] for i in query_indexes[index]]
# output = pd.DataFrame({"True label": testdata, "prediction": pred})
# output = output.sort('prediction',ascending = False)
# output.to_csv("outdemo.csv", index =False)
# print output
# # for i in query_indexes[index]:
# # print test_data[i][0], predicted_scores[i]
if __name__ == '__main__':
main()