-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNoninterference.agda
37 lines (33 loc) · 1.72 KB
/
Noninterference.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
module Dyn.Noninterference where
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Bool using (true; false) renaming (Bool to 𝔹)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (_×_; ∃; ∃-syntax; Σ; Σ-syntax) renaming (_,_ to ⟨_,_⟩)
open import Data.List hiding ([_])
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; trans; subst; cong; sym)
open import Function using (case_of_)
open import Common.Utils
open import Common.SecurityLabels
open import Common.Types using (Base; Bool; rep)
open import Dyn.Syntax
open import Dyn.Values
open import Dyn.Erasure
open import Dyn.BigStep
open import Dyn.BigStepErased
open import Dyn.BigStepSimulation
open import Dyn.BigStepErasedDeterministic
open import Dyn.HeapSecure using (∅-sec)
noninterference : ∀ {μ₁ μ₂ M} {b₁ b₂ b₃ b₄ : rep Bool}
→ ∅ ∣ low ⊢ M [ $ b₁ of high ] ⇓ $ b₃ of low ∣ μ₁
→ ∅ ∣ low ⊢ M [ $ b₂ of high ] ⇓ $ b₄ of low ∣ μ₂
---------------------------------------------
→ b₃ ≡ b₄
noninterference {M = M} {b₁} {b₂} {b₃} {b₄} M[b₁]⇓b₃ M[b₂]⇓b₄ =
let ϵM[●]⇓ϵb₃ = subst (λ □ → _ ∣ _ ⊢ □ ⇓ₑ _ ∣ _) (substitution-erase M ($ b₁ of high))
(sim ∅-sec M[b₁]⇓b₃)
ϵM[●]⇓ϵb₄ = subst (λ □ → _ ∣ _ ⊢ □ ⇓ₑ _ ∣ _) (substitution-erase M ($ b₂ of high))
(sim ∅-sec M[b₂]⇓b₄) in
case ⇓ₑ-deterministic ϵM[●]⇓ϵb₃ ϵM[●]⇓ϵb₄ of λ where
⟨ refl , _ ⟩ → refl