forked from lightvector/GoNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualize.py
executable file
·309 lines (260 loc) · 11.6 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/python3
import sys
import os
import argparse
import traceback
import random
import math
import time
import logging
import h5py
import contextlib
import json
import tensorflow as tf
import numpy as np
import data
from board import Board
from model import Model
#Command and args-------------------------------------------------------------------
description = """
Examine neural net weights and other stats.
This is mostly a sandbox for random ideas for things that might be cool to visualize.
"""
parser = argparse.ArgumentParser(description=description)
parser.add_argument('-model-file', help='model file prefix to load', required=True)
parser.add_argument('-conv-norm-by-xy', help='weights name -> average norm by position', required=False)
parser.add_argument('-conv-norm-by-channel', help='weights name -> matrix of average weight norms by channels', required=False)
parser.add_argument('-dump', help='weights name -> dump weights', required=False)
args = vars(parser.parse_args())
model_file = args["model_file"]
conv_norm_by_xy = args["conv_norm_by_xy"]
conv_norm_by_channel = args["conv_norm_by_channel"]
dump = args["dump"]
def log(s):
print(s,flush=True)
# Model ----------------------------------------------------------------
print("Building model", flush=True)
with open(model_file + ".config.json") as f:
model_config = json.load(f)
model = Model(model_config)
def volume(variable):
shape = variable.get_shape()
variable_parameters = 1
for dim in shape:
variable_parameters *= dim.value
return variable_parameters
total_parameters = 0
for variable in tf.global_variables():
variable_parameters = volume(variable)
total_parameters += variable_parameters
log("Model variable %s, %d parameters" % (variable.name,variable_parameters))
log("Built model, %d total parameters" % total_parameters)
# Testing ------------------------------------------------------------
print("Testing", flush=True)
saver = tf.train.Saver(
max_to_keep = 10000,
save_relative_paths = True,
)
#Some tensorflow options
#tfconfig = tf.ConfigProto(log_device_placement=False,device_count={'GPU': 0})
tfconfig = tf.ConfigProto(log_device_placement=False)
#tfconfig.gpu_options.allow_growth = True
#tfconfig.gpu_options.per_process_gpu_memory_fraction = 0.4
with tf.Session(config=tfconfig) as session:
saver.restore(session, model_file)
sys.stdout.flush()
sys.stderr.flush()
log("Began session")
sys.stdout.flush()
sys.stderr.flush()
def run(fetches):
return session.run(fetches, feed_dict={})
if dump is not None:
variables = dict((variable.name,variable) for variable in tf.trainable_variables())
for name in dump.split(","):
variable = variables[name]
variable = np.array(variable.eval())
if len(variable.shape) == 0:
print(variable)
elif len(variable.shape) == 1:
print(" ".join(str(variable[x0]) for x0 in range(variable.shape[0])))
elif len(variable.shape) == 2:
print("\n".join(" ".join(str(variable[x0,x1])
for x1 in range(variable.shape[1]))
for x0 in range(variable.shape[0])))
elif len(variable.shape) == 3:
print("\n".join("\n".join(" ".join(str(variable[x0,x1,x2])
for x2 in range(variable.shape[2]))
for x1 in range(variable.shape[1]))
for x0 in range(variable.shape[0])))
elif len(variable.shape) == 4:
print("\n".join("\n".join("\n".join(" ".join(str(variable[x0,x1,x2,x3])
for x3 in range(variable.shape[3]))
for x2 in range(variable.shape[2]))
for x1 in range(variable.shape[1]))
for x0 in range(variable.shape[0])))
if conv_norm_by_xy is not None:
variables = dict((variable.name,variable) for variable in tf.trainable_variables())
for name in conv_norm_by_xy.split(","):
variable = variables[name]
#Should be x,y,in_channels,out_channels
assert(len(variable.shape) == 4)
norms = tf.sqrt(tf.reduce_mean(variable*variable,axis=[2,3]))
norms = np.array(run(norms))
print(name + " " + str(volume(variable)) + " parameters")
for y in range(norms.shape[1]):
for x in range(norms.shape[0]):
print(norms[x,y], end=",")
print("")
if conv_norm_by_channel is not None:
variables = dict((variable.name,variable) for variable in tf.trainable_variables())
#Each convolution weight variable has a set of channels it takes in as input and a set of channels it produces
#as output. This is a dictionary of the mapping.
channel_names_by_var_name = {
"conv1/wcenter:0":("input","trunk"),
"conv1/w:0":("input","trunk"),
"rconv1/w1:0":("trunk","rconv1mid"),
"rconv1/w2:0":("rconv1mid","trunk"),
"rconv2/w1:0":("trunk","rconv2mid"),
"rconv2/w2:0":("rconv2mid","trunk"),
"rconv3/w1:0":("trunk","rconv3mid"),
"rconv3/w2:0":("rconv3mid","trunk"),
"rconv4/w1:0":("trunk","rconv4mid"),
"rconv4/w2:0":("rconv4mid","trunk"),
"hvconv1/w1:0":("trunk","hconv1mid"),
"hvconv1/w2:0":("hvconv1mid","trunk"),
"hvconv2/w1:0":("trunk","hconv2mid"),
"hvconv2/w2:0":("hvconv2mid","trunk"),
"p1/intermediate_conv/w:0":("trunk","policy"),
"g1/w:0":("trunk","policyglobal"),
}
#Try permuting channels to group channels as best as possible
#First, build a dictionary mapping the name of the channel to some permutation arrays that we will permute
#as we try to optimize.
perm_of_channel_name = {}
for var_name in conv_norm_by_channel.split(","):
variable = variables[var_name]
(input_channel_name,output_channel_name) = channel_names_by_var_name[var_name]
perm_of_channel_name[input_channel_name] = [i for i in range(variable.shape[2].value)]
perm_of_channel_name[output_channel_name] = [i for i in range(variable.shape[3].value)]
random.shuffle(perm_of_channel_name[input_channel_name])
random.shuffle(perm_of_channel_name[output_channel_name])
#Next, call out to tensorflow and collect the average norms of each input->output channel weight across all the 3x3 or other-sized
#convolutions for that weight. These dictionaries all take the var name as a key.
norms = {}
#And these are the same matrix, but normalized so that the rows, or the columns, have norm 1.
input_normalized_norms = {} #Normalized so that each input (axis 0) maps to an output vector of norm 1
output_normalized_norms = {} #Normalized so that each output (axis 1) maps to an input vector of norm 1
for var_name in conv_norm_by_channel.split(","):
variable = variables[var_name]
#Should be x,y,in_channels,out_channels
assert(len(variable.shape) == 4)
norm = tf.sqrt(tf.reduce_mean(variable*variable,axis=[0,1]))
norm = np.array(run(norm))
norms[var_name] = norm
input_normalized_norms[var_name] = norm / (1e-10 + np.linalg.norm(norm,axis=1,keepdims=True))
output_normalized_norms[var_name] = norm / (1e-10 + np.linalg.norm(norm,axis=0,keepdims=True))
#Optimization - caches by variable so that we don't need to recompute things when they don't change.
cached_input_score_by_var_name = {}
cached_output_score_by_var_name = {}
#Computes the score - the sum of the norm of the differences between successive rows and columns in each permuted matrix.
def score():
score = 0.0
for var_name in norms:
input_score_for_var_name = 0.0
output_score_for_var_name = 0.0
inorm = input_normalized_norms[var_name]
onorm = output_normalized_norms[var_name]
(input_channel_name,output_channel_name) = channel_names_by_var_name[var_name]
if var_name in cached_input_score_by_var_name:
input_score_for_var_name = cached_input_score_by_var_name[var_name]
else:
perm0 = perm_of_channel_name[input_channel_name]
for i in range(1,inorm.shape[0]):
xa = inorm[perm0[i-1],:]
xb = inorm[perm0[i],:]
input_score_for_var_name += np.linalg.norm(xa-xb)
cached_input_score_by_var_name[var_name] = input_score_for_var_name
if var_name in cached_output_score_by_var_name:
output_score_for_var_name = cached_output_score_by_var_name[var_name]
else:
perm1 = perm_of_channel_name[output_channel_name]
for i in range(1,onorm.shape[1]):
xa = onorm[:,perm1[i-1]]
xb = onorm[:,perm1[i]]
output_score_for_var_name += np.linalg.norm(xa-xb)
cached_output_score_by_var_name[var_name] = output_score_for_var_name
score += input_score_for_var_name
score += output_score_for_var_name
return score
#Clear the cache when a given channel changes, by searching through all variables that involve that channel
def clear_cache(channel_name):
for var_name in norms:
norm = norms[var_name]
(input_channel_name,output_channel_name) = channel_names_by_var_name[var_name]
if input_channel_name == channel_name:
del cached_input_score_by_var_name[var_name]
if output_channel_name == channel_name:
del cached_output_score_by_var_name[var_name]
def swap(channel_name,arr,i,j):
clear_cache(channel_name)
tmp = arr[i]
arr[i] = arr[j]
arr[j] = tmp
def rotate(channel_name,arr,i,j):
clear_cache(channel_name)
if i > j:
tmp = arr[j]
for k in range(j,i):
arr[k] = arr[k+1]
arr[i] = tmp
elif i < j:
tmp = arr[j]
for k in range(j,i,-1):
arr[k] = arr[k-1]
arr[i] = tmp
#Simulated-annealing accept criterion
def should_accept(cur_score, new_score, temperature):
if new_score < cur_score:
return True
return np.random.random() < np.exp((cur_score - new_score)/temperature)
#Now loop and actually perform the optimization
cur_score = score()
logspace = np.logspace(-0.5,-6.0,100000)
for iteration in range(100000):
temperature = logspace[iteration]
if iteration % 50 == 0:
print("Optimizing " + str(iteration) + " score " + str(cur_score) + " temperature " + str(temperature),flush=True)
for channel_name in perm_of_channel_name:
perm = perm_of_channel_name[channel_name]
i = np.random.randint(len(perm))
j = np.random.randint(len(perm))
if i != j:
swap(channel_name, perm,i,j)
new_score = score()
if should_accept(cur_score,new_score,temperature):
cur_score = new_score
else:
swap(channel_name, perm,i,j)
for channel_name in perm_of_channel_name:
perm = perm_of_channel_name[channel_name]
i = np.random.randint(len(perm))
j = np.random.randint(len(perm))
if i != j:
rotate(channel_name, perm,i,j)
new_score = score()
if should_accept(cur_score,new_score,temperature):
cur_score = new_score
else:
rotate(channel_name, perm,j,i)
#Print the results
for var_name in conv_norm_by_channel.split(","):
norm = norms[var_name]
(input_channel_name,output_channel_name) = channel_names_by_var_name[var_name]
perm0 = perm_of_channel_name[input_channel_name]
perm1 = perm_of_channel_name[output_channel_name]
print(var_name + " " + str(volume(variables[var_name])) + " parameters")
for inflow in range(norm.shape[0]):
for outflow in range(norm.shape[1]):
print(norm[perm0[inflow],perm1[outflow]], end=",")
print("")