-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_I2GNN.py
216 lines (183 loc) · 8.23 KB
/
data_I2GNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
'''
modified from https://github.com/GraphPKU/I2GNN/blob/master/data_processing.py
'''
import numpy as np
import torch
from torch_geometric.data import InMemoryDataset, Data
import pickle
import os
from typing import Callable, List, Optional
from torch_geometric.data import Data, InMemoryDataset
import scipy.io as scio
class dataset_random_graph(InMemoryDataset):
def __init__(self, dataname='count_cycle', root='dataset', processed_name='processed', split='train', yidx: int=0, ymean: float=0, ystd: float=1):
self.root = root
self.dataname = dataname
self.raw = os.path.join(root, dataname)
self.processed = os.path.join(root, dataname, processed_name)
super(dataset_random_graph, self).__init__(root=root, transform=None, pre_transform=None,
pre_filter=None)
split_id = 0 if split == 'train' else 1 if split == 'val' else 2
data, slices = torch.load(self.processed_paths[split_id])
data.y = (data.y[:, [yidx]]-ymean)/ystd
self.data, self.slices = data, slices
self.y_dim = self.data.y.size(-1)
@property
def raw_dir(self):
name = 'raw'
return os.path.join(self.root, self.dataname, name)
@property
def processed_dir(self):
return self.processed
@property
def raw_file_names(self):
names = ["data"]
return ['{}.mat'.format(name) for name in names]
@property
def processed_file_names(self):
return ['data_tr.pt', 'data_val.pt', 'data_te.pt']
def adj2data(self, A, y):
# x: (n, d), A: (e, n, n)
# begin, end = np.where(np.sum(A, axis=0) == 1.)
begin, end = np.where(A == 1.)
edge_index = torch.tensor(np.array([begin, end]))
num_nodes = A.shape[0]
if y.ndim == 1:
y = y.reshape([1, -1])
x = torch.ones((num_nodes, 1), dtype=torch.long)
return Data(x=x, edge_index=edge_index, y=torch.tensor(y), num_nodes=torch.tensor([num_nodes]))
@staticmethod
def wrap2data(d):
# x: (n, d), A: (e, n, n)
x, A, y = d['x'], d['A'], d['y']
x = torch.tensor(x)
begin, end = np.where(np.sum(A, axis=0) == 1.)
edge_index = torch.tensor(np.array([begin, end]))
edge_attr = torch.argmax(torch.tensor(A[:, begin, end].T), dim=-1)
y = torch.tensor(y[-1:])
return Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y)
def process(self):
# process npy data into pyg.Data
print('Processing data from ' + self.raw_dir + '...')
raw_data = scio.loadmat(self.raw_paths[0])
if raw_data['F'].shape[0] == 1:
data_list_all = [[self.adj2data(raw_data['A'][0][i], raw_data['F'][0][i]) for i in idx]
for idx in [raw_data['train_idx'][0], raw_data['val_idx'][0], raw_data['test_idx'][0]]]
else:
data_list_all = [[self.adj2data(A, y) for A, y in zip(raw_data['A'][0][idx][0], raw_data['F'][idx][0])]
for idx in [raw_data['train_idx'], raw_data['val_idx'], raw_data['test_idx']]]
for save_path, data_list in zip(self.processed_paths, data_list_all):
print('pre-transforming for data at'+save_path)
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
temp = []
for i, data in enumerate(data_list):
if i % 100 == 0:
print('Pre-processing %d/%d' % (i, len(data_list)))
temp.append(self.pre_transform(data))
data_list = temp
# data_list = [self.pre_transform(data) for data in data_list]
data, slices = self.collate(data_list)
torch.save((data, slices), save_path)
def create_one_hot_label(d, max_num_rings):
# please manually define this function replying on the labels you want
num_labels = 2 + (1 + max_num_rings) + 2 # 1-bit for HAS RING, 1-bit for HAS tricycles
labels = []
# if has ring
flag = [1., 0] if d['has_rings'] == 'True' else [0, 1.]
labels.append(np.array(flag).astype(np.float32))
# how many rings
flag = np.eye(max_num_rings + 1)[int(d['nring'])]
labels.append(flag.astype(np.float32))
# if has 3-ring
# flag = [1., 0] if int(d['natom_in_3_rings']) > 0 else [0, 1.]
# mol = Chem.MolFromSmiles(Chem.CanonSmiles(d['smiles']))
# flag = utils.detect_triple_ring(mol)
flag = [1., 0] if d['has_triple_ring'] == 'True' else [0, 1.]
labels.append(np.array(flag).astype(np.float32))
return labels
class Chembl(InMemoryDataset):
def __init__(self, root: str = "dataset/count_chembl", processed_name: str = 'processed'):
self.processed_name = processed_name
super().__init__(root)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self) -> List[str]:
return ['chembl.pkl']
@property
def processed_dir(self):
return os.path.join(self.root, self.processed_name)
@property
def processed_file_names(self) -> str:
return 'data_processed.pt'
def process(self):
try:
import rdkit
from rdkit import Chem, RDLogger
from rdkit.Chem.rdchem import BondType as BT
from rdkit.Chem.rdchem import HybridizationType
RDLogger.DisableLog('rdApp.*')
except ImportError:
rdkit = None
with open(self.raw_paths[0], 'rb') as f:
smiles_list = pickle.load(f)
data_list = []
for i, sm in enumerate(smiles_list):
if i % 500 == 0:
print('Pre-processing: %d/%d' %(i, len(smiles_list)))
mol = Chem.MolFromSmiles(sm)
N = mol.GetNumAtoms()
# x
x = torch.zeros([N, ], dtype=torch.long)
# edge
row, col, edge_type = [], [], []
for bond in mol.GetBonds():
start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
row += [start, end]
col += [end, start]
edge_type += 2 * [1]
edge_index = torch.tensor([row, col], dtype=torch.long)
edge_type = torch.tensor(edge_type, dtype=torch.long)
edge_attr = torch.reshape(edge_type, [-1, 1]).to(torch.float)
perm = (edge_index[0] * N + edge_index[1]).argsort()
edge_index = edge_index[:, perm]
edge_type = edge_type[perm]
edge_attr = edge_attr[perm]
data = Data(x=x, edge_index=edge_index,
edge_attr=edge_attr, name=sm)
# calculate rings
size_list = [3, 4, 5, 6, 7]
ssr = Chem.GetSymmSSSR(mol)
ssr = [list(s) for s in ssr]
n_kring_graph = np.zeros([1, len(size_list)], dtype=np.int)
n_kring_node = np.zeros((N, len(size_list)), dtype=np.int)
for ring in ssr:
size = len(ring)
if size not in size_list:
continue
# node level
for atom in ring:
n_kring_node[atom, size_list.index(size)] += 1
# graph level
n_kring_graph[0, size_list.index(size)] += 1
n_kring_graph = torch.tensor(n_kring_graph, dtype=torch.int)
n_kring_node = torch.tensor(n_kring_node, dtype=torch.int)
data.n_kring_graph = n_kring_graph
# data.n_kring_node = n_kring_node
data.y = n_kring_node.float()
if self.pre_filter is not None and not self.pre_filter(data):
continue
if self.pre_transform is not None:
data = self.pre_transform(data)
data_list.append(data)
torch.save(self.collate(data_list), self.processed_paths[0])
if __name__ == "__main__":
ds = dataset_random_graph("count_cycle", split="train")
dataset_random_graph("count_cycle", split="valid")
dataset_random_graph("count_cycle", split="test")
dataset_random_graph("count_graphlet", split="train")
dataset_random_graph("count_graphlet", split="valid")
dataset_random_graph("count_graphlet", split="test")
print(ds[0])
Chembl()