-
Notifications
You must be signed in to change notification settings - Fork 12
/
ImgFilter.py
146 lines (134 loc) · 4.88 KB
/
ImgFilter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
import numpy as np
from impl import models, PolyConv, GDataset, utils
import datasets
from torch.optim import Adam
import optuna
import torch.nn as nn
def split():
'''
Following `"BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation",
we remove edge pixels.
'''
global masked_dataset
masked_dataset = GDataset.GDataset(*baseG.get_split("valid"))
def buildModel(conv_layer, aggr, alpha, image_idx=0, **kwargs):
emb = models.Seq([models.TensorMod(baseG.x[:, image_idx].reshape(-1, 1))])
if args.power:
conv_fn = PolyConv.PowerConv
elif args.legendre:
conv_fn = PolyConv.LegendreConv
elif args.cheby:
conv_fn = PolyConv.ChebyshevConv
else:
from functools import partial
conv_fn = partial(PolyConv.JacobiConv, **kwargs)
if args.fixalpha:
from bestHyperparams import image_filter_alpha
alpha = image_filter_alpha["power" if args.power else
("cheby" if args.cheby else "jacobi")][args.dataset]
conv = PolyConv.PolyConvFrame(conv_fn,
depth=conv_layer,
aggr=aggr,
alpha=alpha,
fixed=args.fixalpha)
comb = models.Combination(1, conv_layer + 1, args.sole)
if args.bern:
conv = PolyConv.Bern_prop(conv_layer)
gnn = models.Gmodel(emb, conv, comb).to(device)
return gnn
def search_hyper_params(trial):
conv_layer = 10
aggr = "gcn"
lr1 = trial.suggest_categorical("lr1", [0.001, 0.005, 0.01, 0.05])
lr2 = trial.suggest_categorical("lr2", [0.001, 0.005, 0.01, 0.05])
lr3 = trial.suggest_categorical("lr3", [0.001, 0.005, 0.01, 0.05])
wd1 = trial.suggest_categorical("wd1", [0.0, 1e-4, 5e-4, 1e-3])
wd2 = trial.suggest_categorical("wd2", [0.0, 1e-4, 5e-4, 1e-3])
wd3 = trial.suggest_categorical("wd3", [0.0, 1e-4, 5e-4, 1e-3])
alpha = trial.suggest_float('alpha', 0.5, 2.0, step=0.5)
a = trial.suggest_float('a', -1.1, -0.0, step=0.05)
b = trial.suggest_float('b', -0.2, 3.0, step=0.05)
return work(conv_layer,
aggr,
alpha,
lr1,
lr2,
lr3,
wd1,
wd2,
wd3,
a=a,
b=b)
def work(conv_layer: int = 10,
aggr: str = "gcn",
alpha: float = 1.0,
lr1: float = 1e-2,
lr2: float = 1e-2,
lr3: float = 1e-2,
wd1: float = 0,
wd2: float = 0,
wd3: float = 0,
**kwargs):
out_loss = []
for rep in range(args.repeat):
out_loss.append([])
utils.set_seed(rep)
for idx in range(50):
y = masked_dataset.y[:, idx].reshape(-1, 1)
gnn = buildModel(conv_layer, aggr, alpha, idx, **kwargs)
optimizer = Adam([{
'params': gnn.emb.parameters(),
'weight_decay': wd1,
'lr': lr1
}, {
'params': gnn.conv.parameters(),
'weight_decay': wd2,
'lr': lr2
}, {
'params': gnn.comb.parameters(),
'weight_decay': wd3,
'lr': lr3
}])
best_loss = np.inf
early_stop = 0
gnn.train()
for i in range(1000):
optimizer.zero_grad()
pred = gnn(masked_dataset.edge_index, masked_dataset.edge_attr,
masked_dataset.mask)
loss = torch.square(pred - y).sum()
loss.backward()
optimizer.step()
loss = loss.item()
if loss < best_loss:
best_loss = loss
early_stop = 0
early_stop += 1
if early_stop > 200:
break
out_loss[-1].append(best_loss)
print(
f"end loss {np.average(out_loss):.6e}"
)
return np.average(out_loss)
if __name__ == '__main__':
args = utils.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
baseG = datasets.load_dataset(args.dataset, args.split)
baseG.to(device)
masked_dataset = None
output_channels = 1
split()
if args.test:
from bestHyperparams import img_params
print(work(**(img_params[args.dataset])))
else:
study = optuna.create_study(direction="minimize",
storage="sqlite:///" + args.path +
args.name + ".db",
study_name=args.name,
load_if_exists=True)
study.optimize(search_hyper_params, n_trials=args.optruns)
print("best params ", study.best_params)
print("best valf1 ", study.best_value)