-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimize_H.cpp
138 lines (122 loc) · 4.58 KB
/
optimize_H.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#include <utility>
#include <memory>
#include "experiment.h"
#include "utils/parse_data.h"
#include "utils/codeword.h"
#include "algo/algo.h"
#include "algo/qp_admm.h"
using namespace std;
const int THREADS_NUM = 200;
double SNR = -3.0;
shared_ptr <QPADMMDecoder> decoder = make_shared<QPADMMDecoder>(1.95, 0.5, 1000, 1e-5);
double FER(const TMatrix &H, int tests_num = 1000) {
auto o = GetOrtogonal(H);
if (!o.second)
return 1.0;
TMatrix G = o.first;
mt19937 rnd(239);
vector <TCodeword> codewords = gen_random_codewords(G, tests_num, rnd);
ExperimentResult res = multithread_experiment(decoder, codewords, H, SNR, THREADS_NUM);
return res.FER();
}
struct PermutationsMatrix {
public:
PermutationsMatrix(int block_size, const TMatrix &blocks, const vector <vector<int>> diagonals) :
_block_size(block_size), _blocks(blocks), _diagonals(diagonals) {}
PermutationsMatrix(int block_size, const TMatrix &H) : _block_size(block_size) {
assert((int) H.size() % block_size == 0 && (int) H[0].size() % block_size == 0);
for (int i = 0; i < (int) H.size(); i += block_size) {
_diagonals.push_back({});
_blocks.push_back({});
for (int j = 0; j < (int) H[0].size(); j += block_size) {
int s = -block_size;
for (int k = 0; k < block_size; k++)
for (int l = 0; l < block_size; l++)
if (H[i + k][j + l]) {
int ns = (l - k + block_size) % block_size;
assert(s == -block_size || s == ns);
s = ns;
}
_diagonals.back().push_back(s);
_blocks.back().push_back(s != -block_size);
}
}
assert(to_tmatrix() == H);
}
TMatrix to_tmatrix() const {
TMatrix H(_block_size *_blocks.size());
for (int i = 0; i < (int) H.size(); i++)
H[i].resize(_block_size * _blocks[0].size(), 0);
for (int i = 0; i < (int) _blocks.size(); i++)
for (int j = 0; j < (int) _blocks[i].size(); j++)
if (_blocks[i][j]) {
int s = _diagonals[i][j];
assert(0 <= s && s < _block_size);
for (int k = 0; k < _block_size; k++) {
int l = (s + k + _block_size) % _block_size;
H[i * _block_size + k][j * _block_size + l] = 1;
}
}
return H;
}
template<typename Gen>
PermutationsMatrix random_permute(Gen &rnd) const {
int i = rnd() % (int) _blocks.size();
int j = rnd() % (int) _blocks[0].size();
TMatrix blocks = _blocks;
vector <vector<int>> diagonals = _diagonals;
if (!blocks[i][j] or rnd() % 2 == 0)
blocks[i][j] = !blocks[i][j];
diagonals[i][j] = rnd() % _block_size;
return PermutationsMatrix(_block_size, blocks, diagonals);
}
private:
int _block_size;
TMatrix _blocks;
vector <vector<int>> _diagonals;
};
template<typename Gen>
PermutationsMatrix optimize(PermutationsMatrix H, Gen &rnd, int iters, const string &save_filepath) {
double error = FER(H.to_tmatrix());
cout << "initial FER=" << error << endl;
for (int i = 0; i < iters; i++) {
PermutationsMatrix newH = H.random_permute(rnd);
double new_error = FER(newH.to_tmatrix());
cout << "\tproposal: FER=" << new_error << endl;
if (new_error < error) {
H = newH;
error = new_error;
cout << "accept, FER=" << error << endl;
save_matrix(H.to_tmatrix(), save_filepath);
}
}
return H;
}
PermutationsMatrix random_permutation_matrix(int block_size, int n, int m) {
while (true) {
TMatrix blocks(n);
vector <vector<int>> d(n);
for (int i = 0; i < n; i++) {
blocks[i].resize(m);
d[i].resize(m);
for (int j = 0; j < m; j++) {
blocks[i][j] = rand() % 2;
d[i][j] = rand() % block_size;
}
}
PermutationsMatrix H(block_size, blocks, d);
if (GetOrtogonal(H.to_tmatrix()).second)
return H;
}
}
int main() {
std::ios::sync_with_stdio(0);
cout.precision(5);
cout << fixed;
// PermutationsMatrix H0(20, read_pcm("data/H05.txt"));
PermutationsMatrix H0 = random_permutation_matrix(20, 8, 14);
mt19937 rnd(239);
TMatrix H = optimize(H0, rnd, 10000, "data/optimalH.txt").to_tmatrix();
cout << FER(H, 10000) << endl;
return 0;
}