-
Notifications
You must be signed in to change notification settings - Fork 0
/
myretinex_mccann99.m
102 lines (92 loc) · 5.3 KB
/
myretinex_mccann99.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
function Retinex = retinex_mccann99(L, nIterations)
% RETINEX_McCANN99:
% Computes the raw Retinex output from an intensity image, based on the
% more recent model described in:
% McCann, J., "Lessons Learned from Mondrians Applied to Real Images and
% Color Gamuts", Proc. IS&T/SID Seventh Color Imaging Conference, pp. 1-8, 1999
%
% INPUT: L - logarithmic single-channel intensity image to be processed
% nIterations - number of Retinex iterations
%
% OUTPUT: Retinex - raw Retinex output
%
% NOTES: - The input image is assumed to be logarithmic and in the range [0..1]
% - To obtain the retinex "sensation" prediction, a look-up-table needs to
% be applied to the raw retinex output
% - For colour images, apply the algorithm individually for each channel
%
% AUTHORS: Florian Ciurea, Brian Funt and John McCann.
% Code developed at Simon Fraser University.
%
% For information about the code see: Brian Funt, Florian Ciurea, and John McCann
% "Retinex in Matlab," by Proceedings of the IS&T/SID Eighth Color Imaging
% Conference: Color Science, Systems and Applications, 2000, pp 112-121.
%
% paper available online at http://www.cs.sfu.ca/~colour/publications/IST-2000/
%
% Copyright 2000. Permission granted to use and copy the code for research and
% educational purposes only. Sale of the code is not permitted. The code may be
% redistributed so long as the original source and authors are cited.
global OPE RRE Maximum
[nrows ncols] = size(L); % get size of the input image
nLayers = ComputeLayers(nrows, ncols); % compute the number of pyramid layers
nrows = nrows/(2^nLayers); % size of image to process for layer 0
ncols = ncols/(2^nLayers);
% if (nrows*ncols > 25) % not processing images of area > 25
if (nrows*ncols > 10000000000)
error('invalid image size.') % at first layer
end
Maximum = max(L(:)); % maximum color value in the image
OP = Maximum*ones([nrows ncols]); % initialize Old Product
for layer = 0:nLayers
RR = ImageDownResolution(L, 2^(nLayers-layer)); % reduce input to required layer size
OPE = [zeros(nrows,1) OP zeros(nrows,1)]; % pad OP with additional columns
OPE = [zeros(1,ncols+2); OPE; zeros(1,ncols+2)]; % and rows
RRE = [RR(:,1) RR RR(:,end)]; % pad RR with additional columns
RRE = [RRE(1,:); RRE; RRE(end,:)]; % and rows
for iter = 1:nIterations
CompareWithNeighbor(-1, 0); % North
CompareWithNeighbor(-1, 1); % North-East
CompareWithNeighbor(0, 1); % East
CompareWithNeighbor(1, 1); % South-East
CompareWithNeighbor(1, 0); % South
CompareWithNeighbor(1, -1); % South-West
CompareWithNeighbor(0, -1); % West
CompareWithNeighbor(-1, -1); % North-West
end
NP = OPE(2:(end-1), 2:(end-1));
OP = NP(:, [fix(1:0.5:ncols) ncols]); %%% these two lines are equivalent with
OP = OP([fix(1:0.5:nrows) nrows], :); %%% OP = imresize(NP, 2) if using Image
nrows = 2*nrows; ncols = 2*ncols; % Processing Toolbox in MATLAB
end
Retinex = NP;
function CompareWithNeighbor(dif_row, dif_col)
global OPE RRE Maximum
% Ratio-Product operation
IP = OPE(2+dif_row:(end-1+dif_row), 2+dif_col:(end-1+dif_col)) + ...
RRE(2:(end-1),2:(end-1)) - RRE(2+dif_row:(end-1+dif_row), 2+dif_col:(end-1+dif_col));
IP(IP > Maximum) = Maximum; % The Reset step
% ignore the results obtained in the rows or columns for which the neighbors are undefined
if (dif_col == -1) IP(:,1) = OPE(2:(end-1),2); end
if (dif_col == +1) IP(:,end) = OPE(2:(end-1),end-1); end
if (dif_row == -1) IP(1,:) = OPE(2, 2:(end-1)); end
if (dif_row == +1) IP(end,:) = OPE(end-1, 2:(end-1)); end
NP = (OPE(2:(end-1),2:(end-1)) + IP)/2; % The Averaging operation
OPE(2:(end-1), 2:(end-1)) = NP;
function Layers = ComputeLayers(nrows, ncols)
power = 2^fix(log2(gcd(nrows, ncols))); % start from the Greatest Common Divisor
while(power > 1 & ((rem(nrows, power) ~= 0) | (rem(ncols, power) ~= 0)))
power = power/2; % and find the greatest common divisor
end % that is a power of 2
Layers = log2(power);
function Result = ImageDownResolution(A, blocksize)
[rows, cols] = size(A); % the input matrix A is viewed as
result_rows = rows/blocksize; % a series of square blocks
result_cols = cols/blocksize; % of size = blocksize
Result = zeros([result_rows result_cols]);
for crt_row = 1:result_rows % then each pixel is computed as
for crt_col = 1:result_cols % the average of each such block
Result(crt_row, crt_col) = mean2(A(1+(crt_row-1)*blocksize:crt_row*blocksize, ...
1+(crt_col-1)*blocksize:crt_col*blocksize));
end
end