-
Notifications
You must be signed in to change notification settings - Fork 25
/
train_patch2pix.py
374 lines (313 loc) · 17.8 KB
/
train_patch2pix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import argparse
from argparse import Namespace
import os
import time
import numpy as np
import torch
import torch.nn as nn
import torch.utils.data as data
from utils.datasets import ImMatchDatasetMega
from utils.train.helper import *
from utils.train.eval_epoch_immatch import eval_immatch_val_sets
from utils.common.setup_helper import *
from networks.utils import sampson_dist, filter_coarse
from networks.patch2pix import Patch2Pix
def parse_agrs():
parser = argparse.ArgumentParser(description='Train Patch2Pix Matching Network')
parser.add_argument('--gpu', '-gpu', type=int, default=0)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--save_step', type=int, default=1)
parser.add_argument('--plot_counts', type=int, default=5)
parser.add_argument('--batch', type=int, default=8)
parser.add_argument('--regr_batch', type=int, default=1200)
parser.add_argument('--visdom_host', '-vh', type=str, default=None)
parser.add_argument('--visdom_port', '-vp', type=str, default=None)
parser.add_argument('--prefix', type=str, default='')
parser.add_argument('--out_dir', '-o', type=str, default='output/patch2pix')
# Data loading config
parser.add_argument('--dataset', type=str, default='MegaDepth')
parser.add_argument('--data_root', type=str, default='data')
parser.add_argument('--pair_root', type=str, default='data_pairs')
parser.add_argument(
'--match_npy', type=str,
default='megadepth_pairs.ov0.35_imrat1.5.pair500.excl_test.npy'
)
# Model architecture
parser.add_argument('--backbone', type=str, default='ResNet34')
parser.add_argument('--change_stride', action='store_true')
parser.add_argument('--ksize', type=int, default=2)
parser.add_argument('--freeze_feat', type=int, default=87)
parser.add_argument('--feat_idx', type=int, nargs='*', default=[0, 1, 2, 3])
parser.add_argument('--feat_comb', type=str, default='pre')
parser.add_argument('--conv_kers', type=int, nargs='*', default=[3, 3])
parser.add_argument('--conv_dims', type=int, nargs='*', default=[512, 512])
parser.add_argument('--conv_strs', type=int, nargs='*', default=[2, 1])
parser.add_argument('--fc_dims', type=int, nargs='*', default=[512, 256])
parser.add_argument('--psize', type=int, nargs=2, default=[16, 16])
parser.add_argument('--pshift', type=int, default=8)
parser.add_argument('--panc', type=int, choices=[8, 1], default=8)
parser.add_argument('--ptmax', type=int, default=400)
parser.add_argument('--shared', action='store_true')
# Matching thresholds
parser.add_argument('--cthres', type=float, default=0.5)
parser.add_argument('--cls_dthres', type=int, nargs=2, default=[50, 5])
parser.add_argument('--epi_dthres', type=int, nargs=2, default=[50, 5])
# Model intialize
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--ckpt', type=str, default=None)
parser.add_argument('--resume', action='store_true') # Auto load last cpkt
# Optimization
parser.add_argument('--lr_init', '-lr', metavar='%f', type=float, default=5e-4)
parser.add_argument('--lr_decay', '-lrd', metavar='%s[type] %f[*factor] %d[*step]', nargs='*', default=None) # Opt: 'step' 'multistep'
parser.add_argument('--weight_decay', '-wd', metavar='%f', type=float, default=0)
parser.add_argument('--weight_cls', '-wcls', metavar='%f', type=float, default=10.0)
parser.add_argument('--weight_epi', '-wepi', metavar='%f[fine] %f[mid]', type=float, nargs='*', default=[1, 1])
args = parser.parse_args()
return args
def train_epoch(epoch, net, train_loader, train_vis, args, lprint_):
net.train()
train_vis.clear() # Clearn visdom plot data per epoch
plot_step = len(train_loader) // args.plot_counts
# Setup threshold params
net.panc = args.panc
ksize = args.ksize
cthres, cls_dthres, epi_dthres = args.cthres, args.cls_dthres, args.epi_dthres
cls_loss_weight = args.weight_cls
efine_weight, emid_weight = args.weight_epi
# Start training
skipped = 0
lprint_(f'ksize={ksize} cthres={cthres} cls_dthres={cls_dthres} '
f'epi_dthre={epi_dthres} ptmax={args.ptmax} panc={net.panc}')
for i, batch in enumerate(train_loader):
im_src, im_pos, Fs = net.load_batch_(batch, dtype='pair')
# Estimate patch-level matches
corr4d, delta4d, feats1, feats2 = net.forward(im_src, im_pos, ksize=ksize, return_feats=True)
coarse_matches, match_scores = net.cal_coarse_matches(corr4d, delta4d, ksize=ksize, upsample=net.upsample, center=True)
if net.panc > 1 and args.ptmax > 0:
coarse_matches, match_scores = filter_coarse(coarse_matches, match_scores, 0.0, True, ptmax=args.ptmax)
# Coarse matches to locate anchors
coarse_matches = net.shift_to_anchors(coarse_matches)
# Mid level matching on positive pairs
mid_matches, mid_probs = net.forward_fine_match(feats1, feats2,
coarse_matches,
psize=net.psize[0],
ptype=net.ptype[0],
regressor=net.regress_mid)
# Fine level matching based on mid matches
fine_matches, fine_probs = net.forward_fine_match(feats1, feats2,
mid_matches,
psize=net.psize[1],
ptype=net.ptype[1],
regressor=net.regress_fine)
# Calculate per pair losses
cls_batch_lss = []
epi_batch_lss = []
for F, cmat, mmat, fmat, mcls_pred, fcls_pred in zip(Fs, coarse_matches,
mid_matches, fine_matches,
mid_probs, fine_probs):
N = len(cmat)
# Classification gt based on coarse matches
cdist = net.geo_dist_fn(cmat, F)
mdist = net.geo_dist_fn(mmat, F)
fdist = net.geo_dist_fn(fmat, F)
ones = torch.ones_like(cdist)
zeros = torch.zeros_like(cdist)
# Classification loss
mcls_pos = torch.where(cdist < cls_dthres[0], ones, zeros)
fcls_pos = torch.where(mdist < cls_dthres[1], ones, zeros)
mcls_neg = 1 - mcls_pos
fcls_neg = 1 - fcls_pos
if mcls_pos.sum() == 0 or fcls_pos.sum() == 0:
skipped += 1
continue
mcls_weights = mcls_neg.sum() / mcls_pos.sum() * mcls_pos + mcls_neg
mcls_lss = nn.functional.binary_cross_entropy(mcls_pred, mcls_pos, reduction='none')
mcls_lss = (mcls_weights * mcls_lss).mean()
fcls_weights = fcls_neg.sum() / fcls_pos.sum() * fcls_pos + fcls_neg
fcls_lss = nn.functional.binary_cross_entropy(fcls_pred, fcls_pos, reduction='none')
fcls_lss = (fcls_weights * fcls_lss).mean()
cls_lss = mcls_lss + fcls_lss
cls_batch_lss.append(cls_lss)
# Plot cls metric
plot_cls_metric(mcls_pred, mcls_pos, cthres, train_vis.plots.cls_mid)
plot_cls_metric(fcls_pred, fcls_pos, cthres, train_vis.plots.cls_fine)
# Plot statis
train_vis.plots.cls_ratios.mpos_gt.append(mcls_pos.sum().item() / N)
train_vis.plots.cls_ratios.fpos_gt.append(fcls_pos.sum().item() / N)
train_vis.plots.loss.cls_mid.append(mcls_lss.item())
train_vis.plots.loss.cls_fine.append(fcls_lss.item())
# Epipolar loss
mids_gt = torch.where(cdist < epi_dthres[0], ones, zeros).nonzero(as_tuple=False).flatten()
fids_gt = torch.where(mdist < epi_dthres[1], ones, zeros).nonzero(as_tuple=False).flatten()
#lprint_(f'{len(mdist)} {len(mids_gt)} {len(fdist)} {len(fids_gt)}')
if len(fids_gt) == 0 and len(mids_gt) == 0:
skipped += 1
continue
epi_mid = mdist[mids_gt].mean() if len(mids_gt) > 0 else torch.tensor(0).to(mdist)
epi_fine = fdist[fids_gt].mean() if len(fids_gt) > 0 else torch.tensor(0).to(fdist)
epi_lss = emid_weight * epi_mid + efine_weight * epi_fine
epi_batch_lss.append(epi_lss)
# Plot epi dists
if len(mids_gt) > 0:
train_vis.plots.loss.epi_mid.append(epi_mid.item())
train_vis.plots.match_dist.mmid_gt.append(epi_mid.item())
train_vis.plots.match_dist.cmid_gt.append(cdist[mids_gt].mean().item())
if len(fids_gt) > 0:
train_vis.plots.loss.epi_fine.append(epi_fine.item())
train_vis.plots.match_dist.ffid_gt.append(epi_fine.item())
train_vis.plots.match_dist.mfid_gt.append(mdist[fids_gt].mean().item())
# Total loss
cls_loss = torch.stack(cls_batch_lss).mean() if len(cls_batch_lss) > 0 else torch.tensor(0.0, requires_grad=True).to(net.device)
epi_loss = torch.stack(epi_batch_lss).mean() if len(epi_batch_lss) > 0 else torch.tensor(0.0, requires_grad=True).to(net.device)
loss = cls_loss_weight * cls_loss + epi_loss
train_vis.plots.loss.pair.append(loss.item())
# Optimize
net.optim_step_(loss)
# Monitor memory usage
rss, vms = get_sys_mem()
train_vis.plots.mem.rss.append(rss)
train_vis.plots.mem.vms.append(vms)
gpu_maloc, gpu_mres = get_gpu_mem()
train_vis.plots.mem.gpu_maloc.append(gpu_maloc)
train_vis.plots.mem.gpu_mres.append(gpu_mres)
torch.cuda.empty_cache()
# Update plots periocially
if i % plot_step == 0 and i > 0:
train_vis.plot(epoch=epoch + (i / len(train_loader)))
lprint_('Batch:{} Loss:{}'.format(i, train_vis.get_plot_print(train_vis.plots.loss)))
lprint_('Cls_mid:{}'.format(train_vis.get_plot_print(train_vis.plots.cls_mid)))
lprint_('Cls_fine:{}'.format(train_vis.get_plot_print(train_vis.plots.cls_fine)))
lprint_('Match:{}\n'.format(train_vis.get_plot_print(train_vis.plots.match_dist)))
# Always update plots in the end of an epoch
train_vis.plot(epoch=epoch + 1)
lprint_('>Epoch:{} Skipped:{} Loss:{}'.format(epoch + 1, skipped, train_vis.get_plot_print(train_vis.plots.loss)))
lprint_('Cls_mid:{}'.format(train_vis.get_plot_print(train_vis.plots.cls_mid)))
lprint_('Cls_fine:{}'.format(train_vis.get_plot_print(train_vis.plots.cls_fine)))
lprint_('Match:{}'.format(train_vis.get_plot_print(train_vis.plots.match_dist)))
def main():
np.set_printoptions(precision=3)
args = parse_agrs()
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
make_deterministic(args.seed)
print(args)
# Init data loader
match_npy_name = args.match_npy
match_npy = os.path.join(args.pair_root, match_npy_name)
pair_type = match_npy_name.replace('megadepth_pairs.', '').replace('_imrat1.5','').replace('.npy','')
data_tag = 'Mega.' + pair_type
train_set = ImMatchDatasetMega(args.data_root, match_npy, wt=480, ht=320)
train_loader = data.DataLoader(train_set, batch_size=args.batch, shuffle=True)
# Init output dir names
if args.prefix is not '':
odir_tag = args.prefix + '.' + data_tag
else:
odir_tag = data_tag
odir_tag += '.freeze{}'.format(args.freeze_feat)
if args.change_stride:
odir_tag += '.cs'
if args.pretrain:
odir_tag += '.pretrain'
# fe1234nc0.9ep50-100_cls{}lr5e-4..
feat_tag = 'ks{}fe{}'.format(args.ksize, ''.join([str(v) for v in args.feat_idx]))
thres_tag = 'ep{}-{}cls{}-{}'.format(args.epi_dthres[0], args.epi_dthres[1],
args.cls_dthres[0], args.cls_dthres[1])
train_tag = '_wcls{}wepi{}-{}.lr{}'.format(args.weight_cls, args.weight_epi[0],
args.weight_epi[1], args.lr_init)
if args.weight_decay > 0:
train_tag += 'wd{}'.format(args.weight_decay)
if args.lr_decay:
decay_type = args.lr_decay[0]
if decay_type == 'step':
train_tag = '{}lrst{}-{}'.format(train_tag, args.lr_decay[1], args.lr_decay[2])
elif decay_type == 'multistep':
train_tag = '{}lrms{}-{}'.format(train_tag, args.lr_decay[1], args.lr_decay[2])
exp_tag = '{}{}{}'.format(feat_tag, thres_tag, train_tag)
# Regressor
regress_tag = '{}{}_conv{}dim{}str{}fc{}_psz{}-{}a{}'.format(args.feat_comb, args.ptmax,
''.join(map(str, args.conv_kers)),
'-'.join(map(str, args.conv_dims)),
'-'.join(map(str, args.conv_strs)),
'-'.join(map(str, args.fc_dims)),
args.psize[0], args.psize[1],
args.panc)
if args.shared:
regress_tag += '.shared'
# Create output dirs and log file
out_dir = os.path.join(args.out_dir, odir_tag, exp_tag, regress_tag)
args.out_dir = out_dir
if not os.path.exists(out_dir):
os.makedirs(out_dir)
log = open(os.path.join(out_dir, 'log.txt'), 'a')
lprint_ = lambda ms: lprint(ms, log)
lprint_(config2str(args))
lprint_('Log dir {}'.format(out_dir))
lprint_(f'>>>Load dataset:{data_tag}, train:{len(train_loader.dataset)}')
# Initialize visdom
env = '{}.{}_{}{}_{}'.format(odir_tag, feat_tag, thres_tag, train_tag, regress_tag)
server = args.visdom_host
port = args.visdom_port
lprint_('>>Visdom server: {} port: {} env: {}'.format(server, port, env))
train_vis = get_visdom_plots(prefix='train', env=env, server=server, port=port)
test_vis = get_visdom_plots(prefix='test', env=env, server=server, port=port)
# Initialize model
config, best_vals = init_model_config(args, lprint_)
config.freeze_nc = True
net = Patch2Pix(config)
if args.weight_epi[0] == 0:
lprint_('Freeze regressor_mid ...')
for param in net.regress_mid.parameters():
param.requires_grad = False
lprint_('Params backboone={} ncn={} regress_mid={} regress_fine={}'.format(
count_parameters(net.extract),
count_parameters(net.ncn),
count_parameters(net.regress_mid),
count_parameters(net.regress_fine)
))
lprint_('Set geo dist: sampson distance')
net.geo_dist_fn = sampson_dist
# Training and validation
t0 = time.time()
lprint_('Start training from {} to {} ..'.format(config.start_epoch, args.epochs))
for epoch in range(config.start_epoch, args.epochs):
# Always train on normally matching pairs
lprint_('\n>>>Epoch {} training...'.format(epoch+1))
lprint_('>>>Current_lr={}\n'.format(net.optimizer.param_groups[0]['lr']))
t1 = time.time()
train_epoch(epoch, net, train_loader, train_vis, args, lprint_)
lprint_('Epoch training time: {:.2f}s'.format(time.time() - t1))
# Validation
net.panc = 1 # Hard set topk to 1
lprint_(f'Validation setting: panc={net.panc}')
# Always save last ckpt
save_ckpt(net, epoch, out_dir, best_vals=best_vals, last_ckpt=True)
# Save model periodically
if (epoch + 1) % args.save_step == 0:
save_ckpt(net, epoch, out_dir, best_vals=best_vals)
# Eval immatch
try:
res = eval_immatch_val_sets(net,
data_root=f'{args.data_root}/immatch_benchmark/val_dense',
ksize=2, imsize=1024,
eval_type='fine', io_thres=0.5,
sample_max=150, lprint_=lprint_)
# Save the best model based on immatch
qt_err, pass_rate = res
rate = 0.34 * pass_rate[0] + 0.33 * pass_rate[4] + 0.33 * pass_rate[9] # % < 1/5/10 px
if qt_err < best_vals[2] or rate > best_vals[3]:
if qt_err < best_vals[2]:
best_vals[2] = qt_err
if rate > best_vals[3]:
best_vals[3] = rate
save_ckpt(net, epoch, out_dir, best_vals=best_vals, name='immatch_best_ckpt')
lprint_('>>Save best immatch model: epoch={} qt={:.3f} rate={:.2f}%'.format(epoch+1, qt_err, rate))
except:
lprint_('Failed to eval immatch')
res = None
# Update the learning rate
if net.lr_scheduler:
net.lr_scheduler.step()
lprint_('Finished, time:{:.4f}s'.format(time.time() - t0))
log.close()
if __name__ == '__main__':
main()