-
-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathtrain.py
57 lines (44 loc) · 2.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import pytorch_lightning as pl
import argparse
import sys
from model import PedalNet
from prepare import prepare
def main(args):
"""
This trains the PedalNet model to match the output data from the input data.
When you resume training from an existing model, you can override hparams such as
max_epochs, batch_size, or learning_rate. Note that changing num_channels,
dilation_depth, num_repeat, or kernel_size will change the shape of the WaveNet
model and is not advised.
"""
prepare(args)
model = PedalNet(vars(args))
trainer = pl.Trainer(
resume_from_checkpoint=args.model if args.resume else None,
gpus=None if args.cpu or args.tpu_cores else args.gpus,
tpu_cores=args.tpu_cores,
log_every_n_steps=100,
max_epochs=args.max_epochs,
)
trainer.fit(model)
trainer.save_checkpoint(args.model)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("in_file", nargs="?", default="data/in.wav")
parser.add_argument("out_file", nargs="?", default="data/out.wav")
parser.add_argument("--sample_time", type=float, default=100e-3)
parser.add_argument("--normalize", type=bool, default=True)
parser.add_argument("--num_channels", type=int, default=4)
parser.add_argument("--dilation_depth", type=int, default=9)
parser.add_argument("--num_repeat", type=int, default=2)
parser.add_argument("--kernel_size", type=int, default=3)
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--learning_rate", type=float, default=3e-3)
parser.add_argument("--max_epochs", type=int, default=1000)
parser.add_argument("--gpus", type=int, default=-1)
parser.add_argument("--tpu_cores", type=int, default=None)
parser.add_argument("--cpu", action="store_true")
parser.add_argument("--model", type=str, default="models/pedalnet/pedalnet.ckpt")
parser.add_argument("--resume", action="store_true")
args = parser.parse_args()
main(args)