forked from mobicom24/RF-Diffusion
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
103 lines (90 loc) · 4.07 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
import torch
from torch.cuda import device_count
from torch.multiprocessing import spawn
from torch.nn.parallel import DistributedDataParallel
from argparse import ArgumentParser
from tfdiff.params import all_params
from tfdiff.learner import tfdiffLearner
from tfdiff.wifi_model import tfdiff_WiFi
from tfdiff.mimo_model import tfdiff_mimo
from tfdiff.eeg_model import tfdiff_eeg
from tfdiff.fmcw_model import tfdiff_fmcw
from tfdiff.dataset import from_path
def _get_free_port():
import socketserver
with socketserver.TCPServer(('localhost', 0), None) as s:
return s.server_address[1]
def _train_impl(replica_id, model, dataset, params):
opt = torch.optim.AdamW(model.parameters(), lr=params.learning_rate)
learner = tfdiffLearner(params.log_dir, params.model_dir, model, dataset, opt, params)
learner.is_master = (replica_id == 0)
learner.restore_from_checkpoint()
learner.train(max_iter=params.max_iter)
def train(params):
dataset = from_path(params)
if params.task_id==0:
model = tfdiff_eeg(params).cuda()
elif params.task_id==1:
model = tfdiff_mimo(params).cuda()
else:
model = tfdiff_WiFi(params).cuda()
_train_impl(0, model, dataset, params)
def train_distributed(replica_id, replica_count, port, params):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = str(port)
torch.distributed.init_process_group(
'nccl', rank=replica_id, world_size=replica_count)
dataset = from_path(params, is_distributed=True)
device = torch.device('cuda', replica_id)
torch.cuda.set_device(device)
if params.task_id == 0:
model = tfdiff_WiFi(params).to(device)
elif params.task_id == 1:
model = tfdiff_fmcw(params).to(device)
elif params.task_id == 2:
model = tfdiff_mimo(params).to(device)
elif params.task_id == 3:
model = tfdiff_eeg(params).to(device)
else:
raise ValueError("Unexpected task_id.")
model = DistributedDataParallel(model, device_ids=[replica_id])
_train_impl(replica_id, model, dataset, params)
def main(args):
params = all_params[args.task_id]
if args.batch_size is not None:
params.batch_size = args.batch_size
if args.model_dir is not None:
params.model_dir = args.model_dir
if args.data_dir is not None:
params.data_dir = args.data_dir
if args.log_dir is not None:
params.log_dir = args.log_dir
if args.max_iter is not None:
params.max_iter = args.max_iter
replica_count = device_count()
if replica_count > 1:
if params.batch_size % replica_count != 0:
raise ValueError(
f'Batch size {params.batch_size} is not evenly divisble by # GPUs {replica_count}.')
params.batch_size = params.batch_size // replica_count
port = _get_free_port()
spawn(train_distributed, args=(replica_count, port, params), nprocs=replica_count, join=True)
else:
train(params)
# python train.py --task_id [task_id] --model_dir [model_dir] --data_dir [data_dir]
# HF_ENV_NAME=py38-202207 hfai python train.py --task_id [task_id] --model_dir [model_dir] --data_dir [data_dir] --max_iter [iter_num] --batch_size [batch_size] -- -n [node_num] --force
if __name__ == '__main__':
parser = ArgumentParser(
description='train (or resume training) a tfdiff model')
parser.add_argument('--task_id', type=int,
help='use case of tfdiff model, 0/1/2/3 for WiFi/FMCW/MIMO/EEG respectively')
parser.add_argument('--model_dir', default=None,
help='directory in which to store model checkpoints and training logs')
parser.add_argument('--data_dir', default=None, nargs='+',
help='space separated list of directories from which to read csi files for training')
parser.add_argument('--log_dir', default=None)
parser.add_argument('--max_iter', default=None, type=int,
help='maximum number of training iteration')
parser.add_argument('--batch_size', default=None, type=int)
main(parser.parse_args())