-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess.py
229 lines (210 loc) · 13.9 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import argparse
import os
from collections import defaultdict
from multiprocessing import cpu_count
from utils.conceptnet import construct_graph, extract_english
from utils.convert_csqa import convert_to_entailment
from utils.convert_obqa import convert_to_obqa_statement
from utils.graph import generate_adj_data_from_grounded_concepts, generate_adj_data_from_grounded_concepts__use_lm
from utils.grounding import create_matcher_patterns, ground
from utils.tokenization_utils import tokenize_statement_file, make_word_vocab
def main():
default_seed = 0xdefa014
parser = argparse.ArgumentParser()
parser.add_argument('--run', default='graph', choices=['graph', 'csqa', 'obqa'],
help="Which preprocessing to do. "
"'graph' to preprocess the graph; name of the dataset to preprocess that dataset.")
parser.add_argument('--graph', type=str, default='cpnet', choices=['cpnet'], help='Name of knowledge graph to use')
parser.add_argument('--path_prune_threshold', type=float, default=0.0, help='Threshold for pruning paths')
parser.add_argument('--max_node_num', type=int, default=200, help='Maximum number of nodes per graph')
parser.add_argument('-p', '--nprocs', type=int, default=cpu_count(), help='Number of processes to use')
parser.add_argument('--seed', type=int, default=default_seed, help='Random seed')
parser.add_argument('-k', type=int, default=2, help="k hops to use when finding adj graph (WT specific currently)")
parser.add_argument('--max_eventual_edge_num', type=int, default=-1,
help="how many edges in the graph (after all edges added, not just from paths)")
parser.add_argument('--use-lm-scoring', action='store_true', help="Score the relevance of each node using LM "
"(applicable to QA-GNN)")
args, _ = parser.parse_known_args()
parser.add_argument('--save-string', type=str, default=args.graph, help='String to add to saved files')
args = parser.parse_args()
graph = args.graph
dataset = args.run
seed = args.seed if args.seed != default_seed else None
if args.use_lm_scoring:
generate_adj_data_fn = generate_adj_data_from_grounded_concepts__use_lm
else:
generate_adj_data_fn = generate_adj_data_from_grounded_concepts
input_paths = {
'graph': defaultdict(str),
'csqa': {
'train': './data/csqa/train_rand_split.jsonl',
'dev': './data/csqa/dev_rand_split.jsonl',
'test': './data/csqa/test_rand_split_no_answers.jsonl',
},
'obqa': {
'train': './data/obqa/OpenBookQA-V1-Sep2018/Data/Main/train.jsonl',
'dev': './data/obqa/OpenBookQA-V1-Sep2018/Data/Main/dev.jsonl',
'test': './data/obqa/OpenBookQA-V1-Sep2018/Data/Main/test.jsonl',
},
'cpnet': {
'csv': './data/cpnet/conceptnet-assertions-5.6.0.csv',
},
f'transe-cpnet': {
'ent': './data/transe-cpnet/glove.transe.sgd.ent.npy',
'rel': './data/transe-cpnet/glove.transe.sgd.rel.npy',
}
}
output_paths = {
'CUSTOM_GRAPH': {
'csv': f'./data/{graph}/{graph}-mhgrn-format.tsv',
'vocab': f'./data/{graph}/entity_vocab.txt',
'patterns': f'./data/{graph}/matcher_patterns.json',
'unpruned-graph': f'./data/{graph}/{graph}.en.unpruned.graph',
'pruned-graph': f'./data/{graph}/{graph}.en.pruned.graph',
},
'graph': defaultdict(lambda: defaultdict(defaultdict)),
# 'glove': {
# 'npy': './data/glove/glove.6B.300d.npy',
# 'vocab': './data/glove/glove.vocab',
# },
# 'numberbatch': {
# 'npy': f'./data/transe/nb.npy',
# 'vocab': f'./data/transe/nb.vocab',
# 'concept_npy': f'./data/transe/concept.nb.npy'
# },
'dataset': {
'statement': {
'train': f'./data/{dataset}-{args.save_string}/statement/train.statement.jsonl',
'dev': f'./data/{dataset}-{args.save_string}/statement/dev.statement.jsonl',
'test': f'./data/{dataset}-{args.save_string}/statement/test.statement.jsonl',
'train-fairseq': f'./data/{dataset}-{args.save_string}/fairseq/official/train.jsonl',
'dev-fairseq': f'./data/{dataset}-{args.save_string}/fairseq/official/valid.jsonl',
'test-fairseq': f'./data/{dataset}-{args.save_string}/fairseq/official/test.jsonl',
'vocab': f'./data/{dataset}-{args.save_string}/statement/vocab.json',
},
'tokenized': {
'train': f'./data/{dataset}-{args.save_string}/tokenized/train.tokenized.txt',
'dev': f'./data/{dataset}-{args.save_string}/tokenized/dev.tokenized.txt',
'test': f'./data/{dataset}-{args.save_string}/tokenized/test.tokenized.txt',
},
'grounded': {
'train': f'./data/{dataset}-{args.save_string}/grounded/train.grounded.jsonl',
'dev': f'./data/{dataset}-{args.save_string}/grounded/dev.grounded.jsonl',
'test': f'./data/{dataset}-{args.save_string}/grounded/test.grounded.jsonl',
# 'train-ids': f'./data/{dataset}-{args.save_string}/grounded/train.grounded-ids.txt',
# 'dev-ids': f'./data/{dataset}-{args.save_string}/grounded/dev.grounded-ids.txt',
# 'test-ids': f'./data/{dataset}-{args.save_string}/grounded/test.grounded-ids.txt',
},
'graph': {
# 'train': f'./data/{dataset}-{args.save_string}/graph/train.graph.jsonl',
# 'dev': f'./data/{dataset}-{args.save_string}/graph/dev.graph.jsonl',
# 'test': f'./data/{dataset}-{args.save_string}/graph/test.graph.jsonl',
'adj-train': f'./data/{dataset}-{args.save_string}/graph/train.graph.adj.pk',
'adj-dev': f'./data/{dataset}-{args.save_string}/graph/dev.graph.adj.pk',
'adj-test': f'./data/{dataset}-{args.save_string}/graph/test.graph.adj.pk',
# 'nxg-from-adj-train': f'./data/{dataset}-{args.save_string}/graph/train.graph.adj.jsonl',
# 'nxg-from-adj-dev': f'./data/{dataset}-{args.save_string}/graph/dev.graph.adj.jsonl',
# 'nxg-from-adj-test': f'./data/{dataset}-{args.save_string}/graph/test.graph.adj.jsonl',
},
},
}
dataset_specific_conversion_function = {
"csqa": convert_to_entailment,
"obqa": convert_to_obqa_statement,
"graph": ""
}[dataset]
verb_nominalisation_cache_file = './data/verb_nominalisation_cache_file.json'
routines = {
'graph': [
# Keep this as just for conceptnet only - we don't need to extract english only for our other graphs.
# Just need to ensure that pre-made files are at the specifid output locations
{'func': extract_english, 'args': (input_paths['cpnet']['csv'], output_paths['CUSTOM_GRAPH']['csv'],
output_paths['CUSTOM_GRAPH']['vocab'])},
{'func': construct_graph,
'args': (output_paths['CUSTOM_GRAPH']['csv'], output_paths['CUSTOM_GRAPH']['vocab'],
output_paths['CUSTOM_GRAPH']['unpruned-graph'], graph, False)},
{'func': construct_graph,
'args': (output_paths['CUSTOM_GRAPH']['csv'], output_paths['CUSTOM_GRAPH']['vocab'],
output_paths['CUSTOM_GRAPH']['pruned-graph'], graph, True)},
{'func': create_matcher_patterns, 'args': (output_paths['CUSTOM_GRAPH']['vocab'],
output_paths['CUSTOM_GRAPH']['patterns'],
graph, verb_nominalisation_cache_file)},
],
'dataset': [
# Converting from original dataset format to our format
{'func': dataset_specific_conversion_function, 'args': (input_paths[dataset]['train'],
output_paths['dataset']['statement']['train'],
output_paths['dataset']['statement'][
'train-fairseq'])},
{'func': dataset_specific_conversion_function, 'args': (input_paths[dataset]['dev'],
output_paths['dataset']['statement']['dev'],
output_paths['dataset']['statement'][
'dev-fairseq'])},
{'func': dataset_specific_conversion_function, 'args': (input_paths[dataset]['test'],
output_paths['dataset']['statement']['test'],
output_paths['dataset']['statement'][
'test-fairseq'])},
# Tokenizing
{'func': tokenize_statement_file, 'args': (output_paths['dataset']['statement']['train'],
output_paths['dataset']['tokenized']['train'])},
{'func': tokenize_statement_file, 'args': (output_paths['dataset']['statement']['dev'],
output_paths['dataset']['tokenized']['dev'])},
{'func': tokenize_statement_file, 'args': (output_paths['dataset']['statement']['test'],
output_paths['dataset']['tokenized']['test'])},
{'func': make_word_vocab, 'args': ((output_paths['dataset']['statement']['train'],),
output_paths['dataset']['statement']['vocab'])},
# Grounding (entity linking)
{'func': ground, 'args': (output_paths['dataset']['statement']['train'],
output_paths['CUSTOM_GRAPH']['vocab'],
output_paths['CUSTOM_GRAPH']['patterns'],
output_paths['dataset']['grounded']['train'],
output_paths['CUSTOM_GRAPH']['pruned-graph'],
args.nprocs, verb_nominalisation_cache_file)},
{'func': ground, 'args': (output_paths['dataset']['statement']['dev'],
output_paths['CUSTOM_GRAPH']['vocab'],
output_paths['CUSTOM_GRAPH']['patterns'],
output_paths['dataset']['grounded']['dev'],
output_paths['CUSTOM_GRAPH']['pruned-graph'],
args.nprocs, verb_nominalisation_cache_file)},
{'func': ground, 'args': (output_paths['dataset']['statement']['test'],
output_paths['CUSTOM_GRAPH']['vocab'],
output_paths['CUSTOM_GRAPH']['patterns'],
output_paths['dataset']['grounded']['test'],
output_paths['CUSTOM_GRAPH']['pruned-graph'],
args.nprocs, verb_nominalisation_cache_file)},
# Generating input graphs for each question (subgraph of the full KG; sometimes known as 'schema graph')
{'func': generate_adj_data_fn, 'args': (output_paths['dataset']['grounded']['train'],
output_paths['CUSTOM_GRAPH']['pruned-graph'],
output_paths['CUSTOM_GRAPH']['vocab'],
output_paths['dataset']['graph']['adj-train'],
args.nprocs, graph, args.k,
args.max_node_num, args.max_eventual_edge_num, seed)},
{'func': generate_adj_data_fn, 'args': (output_paths['dataset']['grounded']['dev'],
output_paths['CUSTOM_GRAPH']['pruned-graph'],
output_paths['CUSTOM_GRAPH']['vocab'],
output_paths['dataset']['graph']['adj-dev'],
args.nprocs, graph, args.k,
args.max_node_num, args.max_eventual_edge_num, seed)},
{'func': generate_adj_data_fn, 'args': (output_paths['dataset']['grounded']['test'],
output_paths['CUSTOM_GRAPH']['pruned-graph'],
output_paths['CUSTOM_GRAPH']['vocab'],
output_paths['dataset']['graph']['adj-test'],
args.nprocs, graph, args.k,
args.max_node_num, args.max_eventual_edge_num, seed)},
]
}
if args.run != 'graph':
base_dir = f"data/{args.run}-{graph}"
# os.makedirs(f"{base_dir}/fairseq/official", exist_ok=True)
# os.makedirs(f"{base_dir}/fairseq/inhouse", exist_ok=True)
os.makedirs(f"{base_dir}/grounded/", exist_ok=True)
os.makedirs(f"{base_dir}/graph/", exist_ok=True)
os.makedirs(f"{base_dir}/statement/", exist_ok=True)
os.makedirs(f"{base_dir}/tokenized/", exist_ok=True)
# os.makedirs(f"{base_dir}/roberta/", exist_ok=True)
suite = args.run if args.run == 'graph' else 'dataset'
for rt_dic in routines[suite]:
rt_dic['func'](*rt_dic['args'])
print(f'Successfully run {args.run}')
if __name__ == '__main__':
main()