-
Notifications
You must be signed in to change notification settings - Fork 8
/
model_simple_pam.py
586 lines (464 loc) · 24.8 KB
/
model_simple_pam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from functools import partial
from dataclasses import dataclass
from collections import OrderedDict
from VSRT.basicsr.models.archs.spynet import SPyNet
# from TDResNets.opts import parse_opts
# from TDResNets.model import generate_model
# import matplotlib.pyplot as plt
# from skimage import morphology
# from torchvision import transforms
# from stn import SpatialTransformer
# from stn_2d import STN2D
# from stn_2d import Net2
from VESPCN.option import args
# from VESPCN.model.motioncompensator import make_model as make_mc
from VSRT.basicsr.models.archs.Transformer import vsrTransformer
from sofvsr import OFRnet, optical_flow_warp
# from VSRT.basicsr.models.archs.flow_warp import flow_warp
from VSRT.basicsr.models.archs.flow_warp import flow_warp
class Conv2dAuto(nn.Conv2d):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.padding = (self.kernel_size[0] // 2, self.kernel_size[1] // 2) # dynamic add padding based on the kernel_size
conv3x3 = partial(Conv2dAuto, kernel_size=3, bias=False)
def activation_func(activation):
return nn.ModuleDict([
['relu', nn.ReLU(inplace=True)],
['leaky_relu', nn.LeakyReLU(negative_slope=0.01, inplace=True)],
['selu', nn.SELU(inplace=True)],
['none', nn.Identity()]
])[activation]
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, activation='relu'):
super().__init__()
self.in_channels, self.out_channels, self.activation = in_channels, out_channels, activation
self.blocks = nn.Identity()
self.activate = activation_func(activation)
self.shortcut = nn.Identity()
def forward(self, x):
residual = x
if self.should_apply_shortcut: residual = self.shortcut(x)
x = self.blocks(x)
x += residual
x = self.activate(x)
return x
@property
def should_apply_shortcut(self):
return self.in_channels != self.out_channels
class ResNetResidualBlock(ResidualBlock):
def __init__(self, in_channels, out_channels, expansion=1, downsampling=1, conv=conv3x3, *args, **kwargs):
super().__init__(in_channels, out_channels, *args, **kwargs)
self.expansion, self.downsampling, self.conv = expansion, downsampling, conv
self.shortcut = nn.Sequential(
nn.Conv2d(self.in_channels, self.expanded_channels, kernel_size=1,
stride=self.downsampling, bias=False),
nn.BatchNorm2d(self.expanded_channels)) if self.should_apply_shortcut else None
@property
def expanded_channels(self):
return self.out_channels * self.expansion
@property
def should_apply_shortcut(self):
return self.in_channels != self.expanded_channels
def conv_bn(in_channels, out_channels, conv, *args, **kwargs):
return nn.Sequential(OrderedDict({'conv': conv(in_channels, out_channels, *args, **kwargs),
'bn': nn.BatchNorm2d(out_channels) }))
class ResNetBottleNeckBlock(ResNetResidualBlock):
expansion = 1
def __init__(self, in_channels, out_channels, *args, **kwargs):
super().__init__(in_channels, out_channels, expansion=1, *args, **kwargs)
self.blocks = nn.Sequential(
conv_bn(self.in_channels, self.out_channels, self.conv, kernel_size=1),
activation_func(self.activation),
conv_bn(self.out_channels, self.out_channels, self.conv, kernel_size=3, stride=self.downsampling),
activation_func(self.activation),
conv_bn(self.out_channels, self.expanded_channels, self.conv, kernel_size=1),
)
# class ResNetLayer(nn.Module):
# """
# A ResNet layer composed by `n` blocks stacked one after the other
# """
# def __init__(self, in_channels, out_channels, block=ResNetBasicBlock, n=1, *args, **kwargs):
# super().__init__()
# # 'We perform downsampling directly by convolutional layers that have a stride of 2.'
# downsampling = 2 if in_channels != out_channels else 1
# self.blocks = nn.Sequential(
# block(in_channels , out_channels, *args, **kwargs, downsampling=downsampling),
# *[block(out_channels * block.expansion,
# out_channels, downsampling=1, *args, **kwargs) for _ in range(n - 1)]
# )
# def forward(self, x):
# x = self.blocks(x)
# return x
class Net(nn.Module):
def __init__(self, upscale_factor, spatial_dim, cfg):
super(Net, self).__init__()
self.cfg = cfg
self.scale = upscale_factor
self.is_training = 1
# self.OFR = OFRnet(scale=upscale_factor, channels=320, cfg=self.cfg)
self._in_ch = 3
self._sksize = 3
spynet_pretrained = None
self.spynet = Flow_spynet(spynet_pretrained)
# self.spynet = SPyNet(pretrained=spynet_pretrained)
self.upscale_factor = upscale_factor
self.init_feature = nn.Conv2d(5*64, 32, 3, 1, 1, bias=True)
# self.pre_transform = nn.Conv3d(3, 64, 3, 1, 1, bias=True)
# self.init_feature3 = nn.Conv2d(5*64, 32, 3, 1, 1, bias=True)
self.middle = nn.Conv2d(3, 32, 3, 1, 1, bias=True)
# self.middle2 = nn.Conv2d(3, 32, 3, 1, 1, bias=True)
self.init_feature2 = nn.Conv2d(32, 32, 3, 1, 1, bias=True)
# self.init_feature22 = nn.Conv2d(32, 3, 3, 1, 1, bias=True)
self.bn = nn.BatchNorm2d(32)
self.bn2 = nn.BatchNorm2d(32)
self.deep_feature = RDG(G0=32, C=4, G=24, n_RDB=4)
# self.pam = PAM(32)
self.transformer = vsrTransformer(spatial_dim)
# self.transformer2 = vsrTransformer(spatial_dim)
# self.img_upsample = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False)
self.res_scale = 1
# self.conv1 = nn.Conv2d(15, 64, 3, 1, 1, bias=True)
# self.conv2 = nn.Conv2d(64, 3, 3, 1, 1, bias=True)
self.relu = nn.ReLU(inplace=True)
self.conv_bres1 = nn.Conv2d(32, 256, 3, 1, 1, bias=True)
# self.ResNetBottleNeck1 = ResNetBottleNeckBlock(256, 3)
self.conv_bres2 = nn.Conv2d(32, 256, 3, 1, 1, bias=True)
# self.ResNetBottleNeck2 = ResNetBottleNeckBlock(256, 3)
self.upscale = nn.Sequential(
nn.Conv2d(3, 3 * upscale_factor ** 2, 1, 1, 0, bias=True),
nn.PixelShuffle(upscale_factor),
nn.Conv2d(3, 3, 3, 1, 1, bias=True))
self.conv_1 = nn.Conv2d(256, 512, 3, 1, 1, bias=True)
self.conv_2 = nn.Conv2d(512, 1024, 3, 1, 1, bias=True)
self.conv_3 = nn.Conv2d(1024, 1024, 3, 1, 1, bias=True)
self.conv_4 = nn.Conv2d(1024, 512, 3, 1, 1, bias=True)
self.conv_5 = nn.Conv2d(512, 256, 3, 1, 1, bias=True)
self.conv_6 = nn.Conv2d(256, 128, 3, 1, 1, bias=True)
self.conv_7 = nn.Conv2d(128, 3, 3, 1, 1, bias=True)
def forward(self, x_left, x_right, is_training=1):
# x_left_compensated = torch.empty(x_left.shape[0],x_left.shape[1],x_left.shape[2], x_left.shape[3],x_left.shape[4]).to(self.cfg.device)
# x_right_compensated = torch.empty(x_right.shape[0],x_right.shape[1],x_right.shape[2], x_right.shape[3],x_right.shape[4]).to(self.cfg.device)
# for i in range(3):
# draft_cubel = self.sof(x_left[:,i,:,:,:])
# draft_cuber = self.sof(x_right[:,i,:,:,:])
# x_left_compensated[:,i,0,:,:] = draft_cubel[:,0,:,:]
# x_left_compensated[:,i,1,:,:] = draft_cubel[:,1,:,:]
# x_left_compensated[:,i,2,:,:] = draft_cubel[:,2,:,:]
# x_left_compensated[:,i,3,:,:] = draft_cubel[:,3,:,:]
# x_left_compensated[:,i,4,:,:] = draft_cubel[:,4,:,:]
# x_right_compensated[:,i,0,:,:] = draft_cuber[:,0,:,:]
# x_right_compensated[:,i,1,:,:] = draft_cuber[:,1,:,:]
# x_right_compensated[:,i,2,:,:] = draft_cuber[:,2,:,:]
# x_right_compensated[:,i,3,:,:] = draft_cuber[:,3,:,:]
# x_right_compensated[:,i,4,:,:] = draft_cuber[:,4,:,:]
b, c, t, h, w = x_left.shape
mid_left = self.relu(self.middle(x_left[:,:,2,:,:]))
mid_right = self.relu(self.middle(x_right[:,:,2,:,:]))
flows = self.spynet(x_left.permute(0,2,1,3,4))
flow2 = flows[0].contiguous().view(-1, 2,h, w).permute(0, 2, 3, 1) # [B*5, 64, 64, 2]
x_left1 = flow_warp(x_left.view(-1, c, h, w), flow2) # [B*5, 64, 64, 64]
x_left1 = x_left1.view(b, t, c, h, w)
flows4 = self.spynet(x_right.permute(0,2,1,3,4))
flow3 = flows4[0].contiguous().view(-1, 2,h, w).permute(0, 2, 3, 1) # [B*5, 64, 64, 2]
x_right1 = flow_warp(x_right.view(-1, c, h, w), flow3) # [B*5, 64, 64, 64]
x_right1 = x_right1.view(b, t, c, h, w)
# buffer_left = self.pre_transform(x_left)
# buffer_right = self.pre_transform(x_right)
buffer_left = self.transformer(x_left1)
buffer_right = self.transformer2(x_right1)
buffer_left = self.relu(self.init_feature(buffer_left))
buffer_right = self.relu(self.init_feature(buffer_right))
buffer_left, catfea_left = self.deep_feature(buffer_left)
buffer_right, catfea_right = self.deep_feature(buffer_right)
# buffer_leftT, buffer_rightT = self.pam(buffer_left, buffer_right, catfea_left, catfea_right, 1)
# buffer_leftT = mid_left + buffer_left
# buffer_rightT = mid_right + buffer_right
buffer_leftT = buffer_left
buffer_rightT = buffer_right
buffer_leftT = self.relu(self.init_feature2(buffer_leftT))
buffer_rightT = self.relu(self.init_feature2(buffer_rightT))
# buffer_leftT = self.bn2(buffer_leftT)
# buffer_rightT = self.bn2(buffer_rightT)
buffer_leftT = self.relu(self.conv_bres1(buffer_leftT))
buffer_rightT = self.relu(self.conv_bres2(buffer_rightT))
# buffer_leftT = self.ResNetBottleNeck1(buffer_leftT)
# buffer_rightT = self.ResNetBottleNeck2(buffer_rightT)
####################################
buffer_leftT = self.relu(self.conv_1(buffer_leftT))
buffer_rightT = self.relu(self.conv_1(buffer_rightT))
buffer_leftT = self.relu(self.conv_2(buffer_leftT))
buffer_rightT = self.relu(self.conv_2(buffer_rightT))
buffer_leftT = self.relu(self.conv_3(buffer_leftT))
buffer_rightT = self.relu(self.conv_3(buffer_rightT))
buffer_leftT = self.relu(self.conv_4(buffer_leftT))
buffer_rightT = self.relu(self.conv_4(buffer_rightT))
buffer_leftT = self.relu(self.conv_5(buffer_leftT))
buffer_rightT = self.relu(self.conv_5(buffer_rightT))
buffer_leftT = self.relu(self.conv_6(buffer_leftT))
buffer_rightT = self.relu(self.conv_6(buffer_rightT))
buffer_leftT = self.conv_7(buffer_leftT)
buffer_rightT = self.conv_7(buffer_rightT)
##########################################################
buffer_leftT = self.upscale(buffer_leftT)
buffer_rightT = self.upscale(buffer_rightT)
ll = F.interpolate(x_left[:,:,2,:,:], scale_factor=self.upscale_factor, mode='bicubic', align_corners=False)
rr = F.interpolate(x_right[:,:,2,:,:], scale_factor=self.upscale_factor, mode='bicubic', align_corners=False)
out_l = buffer_leftT + ll
out_r = buffer_rightT + rr
return out_l, out_r
def sof(self, x_left):
x_left = x_left.view(x_left.shape[0], 1, x_left.shape[1],x_left.shape[2],x_left.shape[3])
x = x_left.permute(0, 2, 1, 3, 4)
b, n_frames, c, h, w = x.size() # x: b*n*c*h*w
idx_center = (n_frames - 1) // 2
# motion estimation
flow_L1 = []
flow_L2 = []
flow_L3 = []
input = []
for idx_frame in range(n_frames):
if idx_frame != idx_center:
input.append(torch.cat((x[:,idx_frame,:,:,:], x[:,idx_center,:,:,:]), 1))
optical_flow_L1, optical_flow_L2 = self.OFR(torch.cat(input, 0))
optical_flow_L1 = optical_flow_L1.view(-1, b, 2, h//2, w//2)
optical_flow_L2 = optical_flow_L2.view(-1, b, 2, h, w)
# optical_flow_L3 = optical_flow_L3.view(-1, b, 2, h*self.scale, w*self.scale)
# motion compensation
draft_cube = []
for idx_frame in range(n_frames):
if idx_frame == idx_center:
flow_L1.append([])
flow_L2.append([])
# flow_L3.append([])
draft_cube.append(x[:, idx_center, :, :, :])
if idx_frame != idx_center:
if idx_frame < idx_center:
idx = idx_frame
if idx_frame > idx_center:
idx = idx_frame - 1
flow_L1.append(optical_flow_L1[idx, :, :, :, :])
flow_L2.append(optical_flow_L2[idx, :, :, :, :])
# flow_L3.append(optical_flow_L3[idx, :, :, :, :])
for i in range(1):
for j in range(1):
draft = optical_flow_warp(x[:, idx_frame, :, :, :],
optical_flow_L2[idx, :, :, i::1, j::1] / 1)
draft_cube.append(draft)
draft_cube = torch.cat(draft_cube, 1)
return draft_cube
class Flow_spynet(nn.Module):
def __init__(self, spynet_pretrained=None):
super(Flow_spynet, self).__init__()
# optical flow network for feature alignment
self.spynet = SPyNet(pretrained=spynet_pretrained)
def check_if_mirror_extended(self, lrs):
"""Check whether the input is a mirror-extended sequence.
If mirror-extended, the i-th (i=0, ..., t-1) frame is equal to the (t-1-i)-th frame.
Args:
lrs (tensor): Input LR images with shape (n, t, c, h, w)
"""
self.is_mirror_extended = False
if lrs.size(1) % 2 == 0:
lrs_1, lrs_2 = torch.chunk(lrs, 2, dim=1)
if torch.norm(lrs_1 - lrs_2.flip(1)) == 0:
self.is_mirror_extended = True
def forward(self, lrs):
"""Compute optical flow using SPyNet for feature warping.
Note that if the input is an mirror-extended sequence, 'flows_forward' is not needed, since it is equal to 'flows_backward.flip(1)'.
Args:
lrs (tensor): Input LR images with shape (n, t, c, h, w)
Return:
tuple(Tensor): Optical flow. 'flows_forward' corresponds to the
flows used for forward-time propagation (current to previous).
'flows_backward' corresponds to the flows used for
backward-time propagation (current to next).
"""
n, t, c, h, w = lrs.size()
# assert h >= 64 and w >= 64, ('The height and width of inputs should be at least 64, 'f'but got {h} and {w}.')
# check whether the input is an extended sequence
self.check_if_mirror_extended(lrs)
lrs_1 = torch.cat([lrs[:, 0, :, :, :].unsqueeze(1), lrs], dim=1).reshape(-1, c, h, w) # [b*6, 3, 64, 64]
lrs_2 = torch.cat([lrs, lrs[:, t-1, :, :, :].unsqueeze(1)], dim=1).reshape(-1, c, h, w) # [b*6, 3, 64, 64]
flows_backward = self.spynet(lrs_1, lrs_2).view(n, t+1, 2, h, w) # [b, 6, 2, 64, 64]
flows_backward = flows_backward[:, 1:, :, :, :] # [b, 5, 2, 64, 64]
if self.is_mirror_extended: # flows_forward = flows_backward.flip(1)
flows_forward = None
else:
flows_forward = self.spynet(lrs_2, lrs_1).view(n, t+1, 2, h, w) # [b, 6, 2, 64, 64]
flows_forward = flows_forward[:, :-1, :, :, :] # [b, 5, 2, 64, 64]
return flows_forward, flows_backward
class one_conv(nn.Module):
def __init__(self, G0, G):
super(one_conv, self).__init__()
self.conv = nn.Conv2d(G0, G, kernel_size=3, stride=1, padding=1, bias=True)
self.relu = nn.LeakyReLU(0.1, inplace=True)
def forward(self, x):
output = self.relu(self.conv(x))
return torch.cat((x, output), dim=1)
class RDB(nn.Module):
def __init__(self, G0, C, G):
super(RDB, self).__init__()
convs = []
for i in range(C):
convs.append(one_conv(G0+i*G, G))
self.conv = nn.Sequential(*convs)
self.LFF = nn.Conv2d(G0+C*G, G0, kernel_size=1, stride=1, padding=0, bias=True)
def forward(self, x):
out = self.conv(x)
lff = self.LFF(out)
return lff + x
class RDG(nn.Module):
def __init__(self, G0, C, G, n_RDB):
super(RDG, self).__init__()
self.n_RDB = n_RDB
RDBs = []
for i in range(n_RDB):
RDBs.append(RDB(G0, C, G))
self.RDB = nn.Sequential(*RDBs)
self.conv = nn.Conv2d(G0*n_RDB, G0, kernel_size=1, stride=1, padding=0, bias=True)
def forward(self, x):
buffer = x
temp = []
for i in range(self.n_RDB):
buffer = self.RDB[i](buffer)
temp.append(buffer)
buffer_cat = torch.cat(temp, dim=1)
out = self.conv(buffer_cat)
return out, buffer_cat
class CALayer(nn.Module):
def __init__(self, channel):
super(CALayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv_du = nn.Sequential(
nn.Conv2d(channel, channel//16, 1, padding=0, bias=True),
nn.LeakyReLU(0.1, inplace=True),
nn.Conv2d(channel//16, channel, 1, padding=0, bias=True),
nn.Sigmoid())
def forward(self, x):
y = self.avg_pool(x)
y = self.conv_du(y)
return x * y
class ResB(nn.Module):
def __init__(self, channels):
super(ResB, self).__init__()
self.body = nn.Sequential(
nn.Conv2d(channels, channels, 3, 1, 1, groups=4, bias=True),
nn.LeakyReLU(0.1, inplace=True),
nn.Conv2d(channels, channels, 3, 1, 1, groups=4, bias=True),
)
def __call__(self,x):
out = self.body(x)
return out + x
class ResB3(nn.Module):
def __init__(self, channels):
super(ResB3, self).__init__()
self.body = nn.Sequential(
nn.Conv3d(channels, channels, 3, 1, 1, groups=4, bias=True),
nn.LeakyReLU(0.1),
nn.Conv3d(channels, channels, 3, 1, 1, groups=4, bias=True),
)
def __call__(self,x):
out = self.body(x)
return out + x
class PAM(nn.Module):
def __init__(self, channels):
super(PAM, self).__init__()
self.bq = nn.Conv2d(4*channels, channels, 1, 1, 0, groups=4, bias=True)
self.bs = nn.Conv2d(4*channels, channels, 1, 1, 0, groups=4, bias=True)
self.softmax = nn.Softmax(-1)
self.rb = ResB(4 * channels)
self.bn = nn.BatchNorm2d(4 * channels)
def __call__(self, x_left, x_right, catfea_left, catfea_right, is_training):
b, c0, h0, w0 = x_left.shape
Q = self.bq(self.rb(self.bn(catfea_left)))
b, c, h, w = Q.shape
Q = Q - torch.mean(Q, 3).unsqueeze(3).repeat(1, 1, 1, w)
K = self.bs(self.rb(self.bn(catfea_right)))
K = K - torch.mean(K, 3).unsqueeze(3).repeat(1, 1, 1, w)
score = torch.bmm(Q.permute(0, 2, 3, 1).contiguous().view(-1, w, c), # (B*H) * Wl * C
K.permute(0, 2, 1, 3).contiguous().view(-1, c, w)) # (B*H) * C * Wr
M_right_to_left = self.softmax(score) # (B*H) * Wl * Wr
M_left_to_right = self.softmax(score.permute(0, 2, 1)) # (B*H) * Wr * Wl
M_right_to_left_relaxed = M_Relax(M_right_to_left, num_pixels=2)
V_left = torch.bmm(M_right_to_left_relaxed.contiguous().view(-1, w).unsqueeze(1),
M_left_to_right.permute(0, 2, 1).contiguous().view(-1, w).unsqueeze(2)
).detach().contiguous().view(b, 1, h, w) # (B*H*Wr) * Wl * 1
M_left_to_right_relaxed = M_Relax(M_left_to_right, num_pixels=2)
V_right = torch.bmm(M_left_to_right_relaxed.contiguous().view(-1, w).unsqueeze(1), # (B*H*Wl) * 1 * Wr
M_right_to_left.permute(0, 2, 1).contiguous().view(-1, w).unsqueeze(2)
).detach().contiguous().view(b, 1, h, w) # (B*H*Wr) * Wl * 1
V_left_tanh = torch.tanh(5 * V_left)
V_right_tanh = torch.tanh(5 * V_right)
x_leftT = torch.bmm(M_right_to_left, x_right.permute(0, 2, 3, 1).contiguous().view(-1, w0, c0)
).contiguous().view(b, h0, w0, c0).permute(0, 3, 1, 2) # B, C0, H0, W0
x_rightT = torch.bmm(M_left_to_right, x_left.permute(0, 2, 3, 1).contiguous().view(-1, w0, c0)
).contiguous().view(b, h0, w0, c0).permute(0, 3, 1, 2) # B, C0, H0, W0
out_left = x_left * (1 - V_left_tanh.repeat(1, c0, 1, 1)) + x_leftT * V_left_tanh.repeat(1, c0, 1, 1)
out_right = x_right * (1 - V_right_tanh.repeat(1, c0, 1, 1)) + x_rightT * V_right_tanh.repeat(1, c0, 1, 1)
if is_training == 1:
return out_left, out_right
if is_training == 0:
return out_left, out_right
class PAM3(nn.Module):
def __init__(self, channels):
super(PAM3, self).__init__()
self.bq = nn.Conv3d(4*channels, channels, 1, 1, 0, groups=4, bias=True)
self.bs = nn.Conv3d(4*channels, channels, 1, 1, 0, groups=4, bias=True)
self.softmax = nn.Softmax(-1)
self.rb = ResB(4 * channels)
self.bn = nn.BatchNorm3d(4 * channels)
def __call__(self, x_left, x_right, catfea_left, catfea_right, is_training):
b, c0, h0, w0 = x_left.shape
Q = self.bq(self.rb(self.bn(catfea_left)))
b, c, h, w = Q.shape
Q = Q - torch.mean(Q, 3).unsqueeze(3).repeat(1, 1, 1, w)
K = self.bs(self.rb(self.bn(catfea_right)))
K = K - torch.mean(K, 3).unsqueeze(3).repeat(1, 1, 1, w)
score = torch.bmm(Q.permute(0, 2, 3, 1).contiguous().view(-1, w, c), # (B*H) * Wl * C
K.permute(0, 2, 1, 3).contiguous().view(-1, c, w)) # (B*H) * C * Wr
M_right_to_left = self.softmax(score) # (B*H) * Wl * Wr
M_left_to_right = self.softmax(score.permute(0, 2, 1)) # (B*H) * Wr * Wl
M_right_to_left_relaxed = M_Relax(M_right_to_left, num_pixels=2)
V_left = torch.bmm(M_right_to_left_relaxed.contiguous().view(-1, w).unsqueeze(1),
M_left_to_right.permute(0, 2, 1).contiguous().view(-1, w).unsqueeze(2)
).detach().contiguous().view(b, 1, h, w) # (B*H*Wr) * Wl * 1
M_left_to_right_relaxed = M_Relax(M_left_to_right, num_pixels=2)
V_right = torch.bmm(M_left_to_right_relaxed.contiguous().view(-1, w).unsqueeze(1), # (B*H*Wl) * 1 * Wr
M_right_to_left.permute(0, 2, 1).contiguous().view(-1, w).unsqueeze(2)
).detach().contiguous().view(b, 1, h, w) # (B*H*Wr) * Wl * 1
V_left_tanh = torch.tanh(5 * V_left)
V_right_tanh = torch.tanh(5 * V_right)
x_leftT = torch.bmm(M_right_to_left, x_right.permute(0, 2, 3, 1).contiguous().view(-1, w0, c0)
).contiguous().view(b, h0, w0, c0).permute(0, 3, 1, 2) # B, C0, H0, W0
x_rightT = torch.bmm(M_left_to_right, x_left.permute(0, 2, 3, 1).contiguous().view(-1, w0, c0)
).contiguous().view(b, h0, w0, c0).permute(0, 3, 1, 2) # B, C0, H0, W0
out_left = x_left * (1 - V_left_tanh.repeat(1, c0, 1, 1)) + x_leftT * V_left_tanh.repeat(1, c0, 1, 1)
out_right = x_right * (1 - V_right_tanh.repeat(1, c0, 1, 1)) + x_rightT * V_right_tanh.repeat(1, c0, 1, 1)
if is_training == 1:
return out_left, out_right, \
(M_right_to_left.contiguous().view(b, h, w, w), M_left_to_right.contiguous().view(b, h, w, w)),\
(V_left_tanh, V_right_tanh)
if is_training == 0:
return out_left, out_right
def M_Relax(M, num_pixels):
_, u, v = M.shape
M_list = []
M_list.append(M.unsqueeze(1))
for i in range(num_pixels):
pad = nn.ZeroPad2d(padding=(0, 0, i+1, 0))
pad_M = pad(M[:, :-1-i, :])
M_list.append(pad_M.unsqueeze(1))
for i in range(num_pixels):
pad = nn.ZeroPad2d(padding=(0, 0, 0, i+1))
pad_M = pad(M[:, i+1:, :])
M_list.append(pad_M.unsqueeze(1))
M_relaxed = torch.sum(torch.cat(M_list, 1), dim=1)
return M_relaxed
if __name__ == "__main__":
net = Net(upscale_factor=4)
total = sum([param.nelement() for param in net.parameters()])
print(' Number of params: %.2fM' % (total / 1e6))