-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathml.py
171 lines (165 loc) · 4.58 KB
/
ml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
# Reading the data from csv file
df=pd.read_csv(r'C:\Users\Sanchit Jain\Downloads\CodeShark-master\CodeShark-master\Visakhapatnam.csv')
df.drop (["Benzene", "Toluene", "Xylene", "NH3","NO", "NOx","AQI_Bucket"], axis = 1, inplace=True)
df["Date"].dtype
df["Date"]=pd.to_datetime(df["Date"])
df["Date"].dtype
df.drop(["City"],axis=1,inplace=True)
df.index=df.Date
df.drop(["Date"],axis=1,inplace=True)
#Finding all the null indexes in PM 2.5 and their total no.
#Finding all the null indexes in PM 2.5 and their total no.
medianm = df ["PM2.5"].median()
df["PM2.5"].fillna(medianm, inplace = True)
sum=0
for i in range(1149):
if df["PM2.5"][i]==-10:
print(i)
sum+=1
#Finding all the null indexes in PM 10 and their total no.
pm10m = df["PM10"].median()
df["PM10"].fillna(pm10m, inplace = True)
sum=0
for i in range(1149):
if df["PM10"][i]==-100:
print(i)
sum+=1
def replace(j):
if df["PM10"][j]!=(-100):
return df["PM10"][j]
else:
return replace(j+1)
pm10m = df["PM10"].median()
df["PM10"].fillna(pm10m, inplace = True)
for i in range(1149):
if df["PM10"][i]==-100:
df["PM10"][i]=(replace(i+1)+df["PM10"][i-1])/2
#Finding all the null indexes in SO2 and their total no.
so2m = df["SO2"].median()
df["SO2"].fillna(so2m, inplace = True)
sum=0
for i in range(1149):
if df["SO2"][i]==-300:
print(i)
sum+=1
def replace(j):
if df["SO2"][j]!=(-300):
return df["SO2"][j]
else:
return replace(j+1)
df["SO2"].fillna(-300, inplace = True)
for i in range(1149):
if df["SO2"][i]==-300:
df["SO2"][i]=(replace(i+1)+df["SO2"][i-1])/2
#Finding all the null indexes in nO2 and their total no.
no2m = df["NO2"].median()
df["NO2"].fillna(no2m, inplace = True)
sum=0
for i in range(1149):
if df["NO2"][i]==-400:
print(i)
sum+=1
#Finding all the null indexes in nO2 and their total no.
o3m = df["O3"].median()
df["O3"].fillna(o3m, inplace = True)
sum=0
for i in range(1149):
if df["O3"][i]==-200:
print(i)
sum+=1
#Filling and finding AQI
#Finding all the null indexes in nO2 and their total no.
o3m = df["O3"].median()
df["O3"].fillna(o3m, inplace = True)
for i in range(1149):
if df["O3"][i]==-200:
print(i)
sum+=1
aqim = df["AQI"].median()
df["AQI"].fillna(aqim, inplace = True)
sum=0
for i in range(1149):
if df["AQI"][i]==-200:
print(i)
sum+=1
com = df["CO"].median()
df["CO"].fillna(com, inplace = True)
sum=0
for i in range(1149):
if df["CO"][i]==-200:
print(i)
sum+=1
#Function to convert PM 2.5 to AQI
#Do keep in mind. It won't be exactly accurate
def PMAQI(Ci):
if Ci>0 and Ci<=12:
Ahi=50
Alo=0
Clo=0
Chi=12
elif Ci>12 and Ci<=35.4:
Ahi=100
Alo=51
Clo=12.1
Chi=35.4
elif Ci>35.4 and Ci<=55.4:
Ahi=150
Alo=101
Clo=35.5
Chi=55.4
elif Ci>55.4 and Ci<=150.4:
Ahi=200
Alo=151
Clo=55.4
Chi=150.4
elif Ci>150.4 and Ci<=250.4:
Ahi=300
Alo=201
Clo=150.5
Chi=250.4
elif Ci>250.4 and Ci<=1149.4:
Ahi=400
Alo=301
Clo=250.4
Chi=1149.4
elif Ci>1149.4 and Ci<=500.4:
Ahi=500
Alo=401
Clo=1149.4
Chi=500.4
elif Ci>500.4 and Ci<=999.4:
Ahi=999
Alo=501
Clo=500.4
Chi=999.4
AQI=((Ahi-Alo)/(Chi-Clo))*(Ci-Clo)+Alo
return AQI
#df["AQI"][570]=PMAQI(df["PM2.5"][570])
#df["AQI"][889]=PMAQI(df["PM2.5"][889])
#df["AQI"][890]=PMAQI(df["PM2.5"][890])
#Checking Stationarity
from statsmodels.tsa.vector_ar.vecm import coint_johansen
t=df
coint_johansen(t,-1,1).eig
import statsmodels.api as sm
from statsmodels.tsa.api import VAR
#Creating the validation and train set
train=df[:int(0.8*(len(df)))]
valid=df[int(0.8*(len(df))):]
#fitting the model
from statsmodels.tsa.vector_ar.var_model import VAR
model=VAR(endog=df)
model_fit=model.fit(maxlags=15,ic='aic')
#Making predictions on dataset
prediction=model_fit.forecast(model_fit.y,steps=11)
#Converting our prediction array to Dataframe
Prediction=pd.DataFrame(index=range(0,len(prediction)),columns=df.columns)
for j in range(7):
for i in range(len(prediction)):
Prediction.iloc[i][j]=prediction[i][j]
import joblib
joblib.dump(model_fit,'VisakhapatnamVAR.pkl')
print (Prediction)