-
Notifications
You must be signed in to change notification settings - Fork 6
/
dvs-test.py
133 lines (115 loc) · 5.32 KB
/
dvs-test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# ---LICENSE-BEGIN - DO NOT CHANGE OR MOVE THIS HEADER
# This file is part of the Neurorobotics Platform software
# Copyright (C) 2014,2015,2016,2017 Human Brain Project
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# ---LICENSE-END
from mpl_toolkits.mplot3d import Axes3D
import pathlib as plb
import matplotlib.pyplot as plt
import pickle
import numpy as np
import stream
import pyNN.nest as sim
import visualization as vis
import cv2
import pyNN.utility.plotting as pynnplt
import common as cm
import network as nw
args = cm.parse_args()
weights_dict, feature_imgs_dict = nw.train_weights(args.feature_dir)
# The training part is done. Go on with the "actual" simulation
sim.setup(threads=4)
file_extension = plb.Path(args.target_name).suffix
filename = plb.Path(args.target_name).stem
target = stream.read_stream(args.target_name)
size = 1
S1_layers = nw.create_S1_layers(target, weights_dict, [size], args,
is_bag=True)
# NOTE: Since in your original code you're using only size 1 in creating the
# corner layers, I don't create an extra dictionary to store only that one
# layer. Hence the `corner_layer` variable.
corner_layer = nw.create_corner_layer_for(S1_layers[size])
corner_layer_wrapped = { size: [corner_layer] }
layer_collection = {'S1' : S1_layers,
'corner': corner_layer_wrapped}
for layer_dict in layer_collection.values():
for layers in layer_dict.values():
for layer in layers:
layer.population.record('spikes')
stimuli_duration = 0
if file_extension == '.bag':
stimuli_duration = target.duration
print('========= Start simulation: {} ========='.format(sim.get_current_time()))
sim.run(stimuli_duration + 300)
print('========= Stop simulation: {} ========='.format(sim.get_current_time()))
# visualize spatiotemporal spiketrain
def extract_spatiotemporal_spiketrain(size, layer_name, spiketrain, shape):
x = []
y = []
times = []
for populationIdx, neuron in enumerate(spiketrain):
imageIdx = [populationIdx / shape[0], populationIdx % shape[0]]
for spike in neuron:
x.append(imageIdx[0])
y.append(imageIdx[1])
times.append(spike)
return [x, y, times]
allSpatioTemporal = []
for size, layers in S1_layers.items():
for layer in layers:
out_data = layer.population.get_data().segments[0]
allSpatioTemporal.append(extract_spatiotemporal_spiketrain(size, layer.population.label,
out_data.spiketrains,
target.shape))
pickle.dump(allSpatioTemporal, open("results/spatiotemporal_{}.p".format(filename), "wb"))
max_spike_rate = 60. / 300. # mHz
max_firing = max_spike_rate * (stimuli_duration + 300.)
if args.reconstruct_s1_img:
vis_img = np.zeros(target.shape)
vis_parts = vis.visualization_parts(target.shape,
layer_collection['S1'],
feature_imgs_dict,
args.delta_i, args.delta_j)
for size, img_pairs in vis_parts.items():
for img, feature_label in img_pairs:
vis_img += img
cv2.imwrite('{}_S1_reconstruction.png'.format(filename),
vis_img)
# Plot the spike trains of both neuron layers
for layer_name, layer_dict in layer_collection.items():
for size, layers in layer_dict.items():
spike_panels = []
for layer in layers:
out_data = layer.population.get_data().segments[0]
dump_filename = 'results/spiketrain_{}/{}_{}_scale.p'.format(\
filename,
layer.population.label,
size)
try:
plb.Path(dump_filename).parent.mkdir(parents=True)
except OSError as exc: # Python >2.5
pass
pickle.dump(out_data.spiketrains,\
open(dump_filename, 'wb'))
spike_panels.append(pynnplt.Panel(out_data.spiketrains,# xlabel='Time (ms)',
xticks=True, yticks=True,
xlabel='{}, {} scale layer'.format(\
layer.population.label, size)))
pynnplt.Figure(*spike_panels).save('plots/{}_{}_{}_scale.png'.format(\
layer_name,
filename,
size))
sim.end()