Skip to content

Latest commit

 

History

History
41 lines (29 loc) · 825 Bytes

README.md

File metadata and controls

41 lines (29 loc) · 825 Bytes

IONet

This repo is the implementation of paper Weakly-Supervised Action Localization via Embedding-Modeling Iterative Optimization.

Recommended Environment

  • Ubuntu 16.04.6
  • Python 3.6
  • Cuda 9.0
  • PyTorch 1.1.0

Prerequisites

  • Install dependencies: pip install -r requirements.txt.
  • Prepare THUMOS14 and ActivityNet datasets.

Feature Extraction

We employ I3D features in the paper.

We recommend to extract the features using the followingf repo:

Run

  1. For training the model:
python train.py
  1. For testing the model:
python test.py

The final results are saved in .npz format.

Citation

Contact

If you have any questions, please contact me (shihaichao@iie.ac.cn).

License

MIT