forked from pascalxia/driver_attention_prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
326 lines (256 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import argparse
import sys
import os
import tensorflow as tf
import networks
import add_args
from keras import backend as K
import shutil
import pdb
# Define the model here
def model_fn(features, labels, mode, params):
"""The model_fn argument for creating an Estimator."""
# input
cameras = features['cameras']
feature_maps = features['feature_maps']
gazemaps = features['gazemaps']
weights = features['weights']
weights = tf.reshape(weights, (-1,))
labels = tf.reshape(labels, (-1, params['gazemap_size'][0]*params['gazemap_size'][1]))
video_id = features['video_id']
predicted_time_points = features['predicted_time_points']
# build up model
logits = networks.big_conv_lstm_readout_net(feature_maps,
feature_map_size=params['feature_map_size'],
drop_rate=0.2)
# get prediction
ps = tf.nn.softmax(logits)
predictions = {
'ps': ps
}
predicted_gazemaps = tf.reshape(ps, [-1,]+params['gazemap_size']+[1])
# set up loss
loss = tf.losses.softmax_cross_entropy(onehot_labels=labels, logits=logits, weights=weights)
# set up training
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.AdamOptimizer(learning_rate=params['learning_rate'])
train_op = optimizer.minimize(loss, tf.train.get_or_create_global_step())
else:
train_op = None
# set up metrics
# Calculate correlation coefficient
s1 = ps - tf.reduce_mean(ps, axis=1, keepdims=True)
s2 = labels - tf.reduce_mean(labels, axis=1, keepdims=True)
custom_cc = tf.reduce_sum(tf.multiply(s1, s2), axis=1)/tf.sqrt(tf.reduce_sum(tf.pow(s1,2), axis=1)*tf.reduce_sum(tf.pow(s2,2), axis=1))
custom_cc = weights*custom_cc
# Exclude NaNs.
mask = tf.is_finite(custom_cc)
custom_cc = tf.boolean_mask(custom_cc, mask)
custom_cc = tf.metrics.mean(custom_cc)
# Calculate KL-divergence
_labels = tf.maximum(labels, params['epsilon'])
p_entropies = tf.reduce_sum(-tf.multiply(_labels, tf.log(_labels)), axis=1)
kls = loss - p_entropies
kls = weights*kls
kl = tf.metrics.mean(kls)
metrics = {
'custom_cc': custom_cc,
'kl': kl,}
# set up summaries
quick_summaries = []
quick_summaries.append(tf.summary.scalar('kl', kl[1]))
quick_summaries.append(tf.summary.scalar('custom_cc', custom_cc[1]))
quick_summaries.append(tf.summary.scalar('loss', loss))
quick_summary_op = tf.summary.merge(quick_summaries, name='quick_summary')
quick_summary_hook = tf.train.SummarySaverHook(
params['quick_summary_period'],
output_dir=params['model_dir'],
summary_op=quick_summary_op
)
# slow summary
slow_summaries = []
slow_summaries.append(
tf.summary.image('cameras', tf.reshape(cameras, [-1,]+params['image_size']+[3]), max_outputs=2)
)
slow_summaries.append(
tf.summary.image('gazemaps', tf.reshape(gazemaps, [-1,]+params['image_size']+[1]), max_outputs=2)
)
slow_summaries.append(
tf.summary.image('predictions', predicted_gazemaps, max_outputs=2)
)
slow_summary_op = tf.summary.merge(slow_summaries, name='slow_summary')
slow_summary_hook = tf.train.SummarySaverHook(
params['slow_summary_period'],
output_dir=params['model_dir'],
summary_op=slow_summary_op
)
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=metrics,
training_hooks=[quick_summary_hook, slow_summary_hook])
# Set up training and evaluation input functions.
def input_fn(dataset, batch_size, n_steps, shuffle, include_labels, n_epochs, args, weight_data=False):
"""Prepare data for training."""
# get and shuffle tfrecords files
files = tf.data.Dataset.list_files(os.path.join(args.data_dir, dataset, 'tfrecords',
'cameras_gazes_'+args.feature_name+\
'_features_%dfuture_*.tfrecords' % args.n_future_steps))
if shuffle:
files = files.shuffle(buffer_size=10)
# parellel interleave to get raw bytes
dataset = files.apply(tf.contrib.data.parallel_interleave(
tf.data.TFRecordDataset, cycle_length=5, block_length=batch_size))
# shuffle before parsing
if shuffle:
dataset = dataset.shuffle(buffer_size=5*batch_size)
# parse data
def _parse_function(example):
# parsing
context_feature_info = {
'cameras': tf.VarLenFeature(dtype=tf.string),
'gazemaps': tf.VarLenFeature(dtype=tf.string),
'video_id': tf.FixedLenFeature(shape=[], dtype=tf.int64)
}
sequence_feature_info = {
'feature_maps': tf.FixedLenSequenceFeature(shape=[], dtype=tf.string),
'gaze_ps': tf.FixedLenSequenceFeature(shape=[], dtype=tf.string),
'predicted_time_points': tf.FixedLenSequenceFeature(shape=[], dtype=tf.int64),
'weights': tf.FixedLenSequenceFeature(shape=[], dtype=tf.float32)
}
context_features, sequence_features = tf.parse_single_sequence_example(example,
context_features=context_feature_info,
sequence_features=sequence_feature_info)
cameras = tf.sparse_tensor_to_dense(context_features["cameras"], default_value='')
gazemaps = tf.sparse_tensor_to_dense(context_features["gazemaps"], default_value='')
video_id = context_features['video_id']
feature_maps = tf.reshape(tf.decode_raw(sequence_features["feature_maps"], tf.float32),
[-1,]+args.feature_map_size+[args.feature_map_channels])
predicted_time_points = sequence_features["predicted_time_points"]
weights = sequence_features['weights']
if include_labels:
labels = tf.reshape(tf.decode_raw(sequence_features["gaze_ps"], tf.float32),
[-1, args.gazemap_size[0]*args.gazemap_size[1]])
if n_steps is not None:
#select a subsequence
length = tf.shape(cameras)[0]
offset = tf.random_uniform(shape=[], minval=0, maxval=tf.maximum(length-n_steps+1, 1), dtype=tf.int32)
end = tf.minimum(offset+n_steps, length)
cameras = cameras[offset:end]
feature_maps = feature_maps[offset:end]
gazemaps = gazemaps[offset:end]
predicted_time_points = predicted_time_points[offset:end]
weights = weights[offset:end]
if include_labels:
labels = labels[offset:end]
# decode jpg's
cameras = tf.map_fn(
tf.image.decode_jpeg,
cameras,
dtype=tf.uint8,
back_prop=False
)
gazemaps = tf.map_fn(
tf.image.decode_jpeg,
gazemaps,
dtype=tf.uint8,
back_prop=False
)
if not weight_data:
weights = tf.ones(tf.shape(weights))
else:
weights = tf.tile(tf.reduce_mean(weights, axis=0, keep_dims=True), [tf.shape(cameras)[0],])
# return features and labels
features = {}
features['cameras'] = cameras
features['feature_maps'] = feature_maps
features['gazemaps'] = gazemaps
features['video_id'] = video_id
features['predicted_time_points'] = predicted_time_points
features['weights'] = weights
if include_labels:
return features, labels
else:
return features
dataset = dataset.map(_parse_function, num_parallel_calls=10)
padded_shapes = {'cameras': [None,]+args.image_size+[3],
'feature_maps': [None,]+args.feature_map_size+[args.feature_map_channels],
'gazemaps': [None,]+args.image_size+[1],
'video_id': [],
'predicted_time_points': [None,],
'weights': [None,]}
if include_labels:
padded_shapes = (padded_shapes, [None, args.gazemap_size[0]*args.gazemap_size[1]])
dataset = dataset.padded_batch(batch_size, padded_shapes=padded_shapes)
dataset = dataset.prefetch(buffer_size=batch_size)
dataset = dataset.repeat(n_epochs)
return dataset
def main(argv):
parser = argparse.ArgumentParser()
add_args.for_general(parser)
add_args.for_inference(parser)
add_args.for_feature(parser)
add_args.for_training(parser)
add_args.for_lstm(parser)
args = parser.parse_args()
config = tf.estimator.RunConfig(save_summary_steps=float('inf'),
log_step_count_steps=10)
params = {
'image_size': args.image_size,
'gazemap_size': args.gazemap_size,
'feature_map_size': args.feature_map_size,
'model_dir': args.model_dir,
'weight_data': args.weight_data,
'epsilon': 1e-12,
'learning_rate': args.learning_rate,
'quick_summary_period': args.quick_summary_period,
'slow_summary_period': args.slow_summary_period,
}
model = tf.estimator.Estimator(
model_fn=model_fn,
model_dir=args.model_dir,
config=config,
params=params)
# set up the directory to save the best checkpoint
best_ckpt_dir = os.path.join(args.model_dir, 'best_ckpt')
if not os.path.isdir(best_ckpt_dir) or len(os.listdir(best_ckpt_dir))==0:
smallest_loss = float('Inf')
if not os.path.isdir(best_ckpt_dir):
os.makedirs(best_ckpt_dir)
else:
smallest_loss = [float(f.split('_')[1]) for f in os.listdir(best_ckpt_dir) if f.startswith('loss_')][0]
for _ in range(args.train_epochs // args.epochs_before_validation):
# Train the model.
K.clear_session()
model.train(input_fn=lambda: input_fn('training',
args.batch_size, args.n_steps,
shuffle=True, include_labels=True,
n_epochs=args.epochs_before_validation, args=args,
weight_data=args.weight_data)
)
# validate the model
K.clear_session()
valid_results = model.evaluate(input_fn=lambda: input_fn('validation',
batch_size=1, n_steps=None,
shuffle=False, include_labels=True,
n_epochs=1, args=args, weight_data=False) )
print(valid_results)
if -valid_results['custom_cc'] < smallest_loss:
smallest_loss = -valid_results['custom_cc']
# delete best_ckpt_dir
shutil.rmtree(best_ckpt_dir)
# re-make best_ckpt_dir as empty
os.makedirs(best_ckpt_dir)
# note down the new smallest loss
open(os.path.join(best_ckpt_dir, 'loss_%f' % smallest_loss), 'a').close()
# copy the checkpoint
files_to_copy = [f for f in os.listdir(args.model_dir)
if f.startswith('model.ckpt-'+str(valid_results['global_step']))]
for f in files_to_copy:
shutil.copyfile(os.path.join(args.model_dir, f),
os.path.join(best_ckpt_dir, f))
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
main(argv=sys.argv)