-
Notifications
You must be signed in to change notification settings - Fork 23
/
losses.py
265 lines (216 loc) · 9.73 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""All functions related to loss computation and optimization.
"""
import torch
import torch.optim as optim
import numpy as np
from models import utils as mutils
from sde_lib import VESDE, VPSDE
from utils import fft2, ifft2, get_mask
import numpy as np
import time
def get_optimizer(config, params):
"""Returns a flax optimizer object based on `config`."""
if config.optim.optimizer == 'Adam':
optimizer = optim.Adam(params, lr=config.optim.lr, betas=(config.optim.beta1, 0.999), eps=config.optim.eps,
weight_decay=config.optim.weight_decay)
else:
raise NotImplementedError(
f'Optimizer {config.optim.optimizer} not supported yet!')
return optimizer
def optimization_manager(config):
"""Returns an optimize_fn based on `config`."""
def optimize_fn(optimizer, params, step, lr=config.optim.lr,
warmup=config.optim.warmup,
grad_clip=config.optim.grad_clip):
"""Optimizes with warmup and gradient clipping (disabled if negative)."""
if warmup > 0:
for g in optimizer.param_groups:
g['lr'] = lr * np.minimum(step / warmup, 1.0)
if grad_clip >= 0:
torch.nn.utils.clip_grad_norm_(params, max_norm=grad_clip)
optimizer.step()
return optimize_fn
def get_sde_loss_fn(sde, train, reduce_mean=True, continuous=True, likelihood_weighting=True, eps=1e-5):
"""Create a loss function for training with arbirary SDEs.
Args:
sde: An `sde_lib.SDE` object that represents the forward SDE.
train: `True` for training loss and `False` for evaluation loss.
reduce_mean: If `True`, average the loss across data dimensions. Otherwise sum the loss across data dimensions.
continuous: `True` indicates that the model is defined to take continuous time steps. Otherwise it requires
ad-hoc interpolation to take continuous time steps.
likelihood_weighting: If `True`, weight the mixture of score matching losses
according to https://arxiv.org/abs/2101.09258; otherwise use the weighting recommended in our paper.
eps: A `float` number. The smallest time step to sample from.
Returns:
A loss function.
"""
reduce_op = torch.mean if reduce_mean else lambda *args, **kwargs: 0.5 * torch.sum(*args, **kwargs)
def loss_fn(model, batch):
"""Compute the loss function.
Args:
model: A score model.
batch: A mini-batch of training data.
Returns:
loss: A scalar that represents the average loss value across the mini-batch.
"""
score_fn = mutils.get_score_fn(sde, model, train=train, continuous=continuous)
t = torch.rand(batch.shape[0], device=batch.device) * (sde.T - eps) + eps
z = torch.randn_like(batch)
mean, std = sde.marginal_prob(batch, t)
perturbed_data = mean + std[:, None, None, None] * z
score = score_fn(perturbed_data, t)
if not likelihood_weighting:
losses = torch.square(score * std[:, None, None, None] + z)
losses = reduce_op(losses.reshape(losses.shape[0], -1), dim=-1)
else:
g2 = sde.sde(torch.zeros_like(batch), t)[1] ** 2
losses = torch.square(score + z / std[:, None, None, None])
losses = reduce_op(losses.reshape(losses.shape[0], -1), dim=-1) * g2
loss = torch.mean(losses)
return loss
return loss_fn
def get_smld_loss_fn(vesde, train, reduce_mean=False):
"""Legacy code to reproduce previous results on SMLD(NCSN). Not recommended for new work."""
assert isinstance(vesde, VESDE), "SMLD training only works for VESDEs."
# Previous SMLD models assume descending sigmas
smld_sigma_array = torch.flip(vesde.discrete_sigmas, dims=(0,))
reduce_op = torch.mean if reduce_mean else lambda *args, **kwargs: 0.5 * torch.sum(*args, **kwargs)
def loss_fn(model, batch):
model_fn = mutils.get_model_fn(model, train=train)
labels = torch.randint(0, vesde.N, (batch.shape[0],), device=batch.device)
sigmas = smld_sigma_array.to(batch.device)[labels]
noise = torch.randn_like(batch) * sigmas[:, None, None, None]
perturbed_data = noise + batch
score = model_fn(perturbed_data, labels)
target = -noise / (sigmas ** 2)[:, None, None, None]
losses = torch.square(score - target)
losses = reduce_op(losses.reshape(losses.shape[0], -1), dim=-1) * sigmas ** 2
loss = torch.mean(losses)
return loss
return loss_fn
def get_ddpm_loss_fn(vpsde, train, reduce_mean=True):
"""Legacy code to reproduce previous results on DDPM. Not recommended for new work."""
assert isinstance(vpsde, VPSDE), "DDPM training only works for VPSDEs."
reduce_op = torch.mean if reduce_mean else lambda *args, **kwargs: 0.5 * torch.sum(*args, **kwargs)
def loss_fn(model, batch):
model_fn = mutils.get_model_fn(model, train=train)
labels = torch.randint(0, vpsde.N, (batch.shape[0],), device=batch.device)
sqrt_alphas_cumprod = vpsde.sqrt_alphas_cumprod.to(batch.device)
sqrt_1m_alphas_cumprod = vpsde.sqrt_1m_alphas_cumprod.to(batch.device)
noise = torch.randn_like(batch)
perturbed_data = sqrt_alphas_cumprod[labels, None, None, None] * batch + \
sqrt_1m_alphas_cumprod[labels, None, None, None] * noise
score = model_fn(perturbed_data, labels)
losses = torch.square(score - noise)
losses = reduce_op(losses.reshape(losses.shape[0], -1), dim=-1)
loss = torch.mean(losses)
return loss
return loss_fn
def get_step_fn(sde, train, optimize_fn=None, reduce_mean=False, continuous=True, likelihood_weighting=False):
"""Create a one-step training/evaluation function.
Args:
sde: An `sde_lib.SDE` object that represents the forward SDE.
optimize_fn: An optimization function.
reduce_mean: If `True`, average the loss across data dimensions. Otherwise sum the loss across data dimensions.
continuous: `True` indicates that the model is defined to take continuous time steps.
likelihood_weighting: If `True`, weight the mixture of score matching losses according to
https://arxiv.org/abs/2101.09258; otherwise use the weighting recommended by our paper.
Returns:
A one-step function for training or evaluation.
"""
if continuous:
loss_fn = get_sde_loss_fn(sde, train, reduce_mean=reduce_mean,
continuous=True, likelihood_weighting=likelihood_weighting)
else:
assert not likelihood_weighting, "Likelihood weighting is not supported for original SMLD/DDPM training."
if isinstance(sde, VESDE):
loss_fn = get_smld_loss_fn(sde, train, reduce_mean=reduce_mean)
elif isinstance(sde, VPSDE):
loss_fn = get_ddpm_loss_fn(sde, train, reduce_mean=reduce_mean)
else:
raise ValueError(f"Discrete training for {sde.__class__.__name__} is not recommended.")
def step_fn(state, batch):
"""Running one step of training or evaluation.
This function will undergo `jax.lax.scan` so that multiple steps can be pmapped and jit-compiled together
for faster execution.
Args:
state: A dictionary of training information, containing the score model, optimizer,
EMA status, and number of optimization steps.
batch: A mini-batch of training/evaluation data.
Returns:
loss: The average loss value of this state.
"""
model = state['model']
if train:
optimizer = state['optimizer']
optimizer.zero_grad()
loss = loss_fn(model, batch)
loss.backward()
optimize_fn(optimizer, model.parameters(), step=state['step'])
state['step'] += 1
state['ema'].update(model.parameters())
else:
with torch.no_grad():
ema = state['ema']
ema.store(model.parameters())
ema.copy_to(model.parameters())
loss = loss_fn(model, batch)
ema.restore(model.parameters())
return loss
return step_fn
def get_step_fn_regression(train, config, mask=None, loss_fn=None, optimize_fn=None):
def step_fn(state, batch):
model = state['model']
if train:
optimizer = state['optimizer']
optimizer.zero_grad()
# fft
kspace = fft2(batch)
# sample mask
acc_factor = np.random.choice(config.training.acc_factor)
mask = get_mask(batch, config.data.image_size, config.training.batch_size,
type=config.training.mask_type,
acc_factor=acc_factor,
fix=True)
# undersampling
under_kspace = kspace * mask
under_img = torch.abs(ifft2(under_kspace))
est_img = model(under_img)
loss = loss_fn(est_img, batch)
loss.backward()
optimize_fn(optimizer, model.parameters(), step=state['step'])
state['step'] += 1
state['ema'].update(model.parameters())
return loss
else:
with torch.no_grad():
ema = state['ema']
ema.store(model.parameters())
ema.copy_to(model.parameters())
# fft
kspace = fft2(batch)
# sample mask
mask = get_mask(batch, config.data.image_size, config.traiing.batch_size,
type=config.training.mask_type,
acc_factor=config.training.acc_factor)
# undersampling
under_kspace = kspace * mask
under_img = torch.real(ifft2(under_kspace))
est_img = model(under_img)
ema.restore(model.parameters())
return est_img
return step_fn