-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_t2t_finetuning.py
513 lines (462 loc) · 20.9 KB
/
run_t2t_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
#!/usr/bin/env python
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import random
import numpy as np
import pandas as pd
import torch
import transformers
from transformers import (
AutoConfig,
AutoModelForSeq2SeqLM,
AutoModelForCausalLM,
AutoTokenizer,
DataCollatorWithPadding,
DataCollatorForLanguageModeling,
DataCollatorForSeq2Seq,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from peft import prepare_model_for_int8_training
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
import datasets
from data_utils import load_flores_datasets, load_rehearsal_dataset
from augmentation_utils import do_augment
from prompt_utils import prompt_monolingual, prompt_translation, prompt_xss, prompt_bilingual
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_source_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
num_beams: Optional[int] = field(
default=1,
metadata={
"help": (
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
"which is used during ``evaluate`` and ``predict``."
)
},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
},
)
augmentation_type: str = field(
default='monolingual',
metadata={
"help": "Mode for data augmentation (monolingual / translation / bilingual / random)."
},
)
continual_type: str = field(
default=None,
metadata={
"help": "Mode for continual learning method (rehearsal / None)."
},
)
continual_size: int = field(
default=100,
metadata={
"help": "Mode for data (monolingual / translation / bilingual / random)."
},
)
num_train_ratio: float = field(
default=1.0,
metadata={
"help": "Number of samples to be taken from FLORES"
},
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Load the datasets
raw_datasets = load_flores_datasets(pivot_langs=['eng_Latn'], augmentation=data_args.augmentation_type, num_train_ratio=data_args.num_train_ratio)
# raw_datasets = load_flores_datasets(pivot_langs=['eng_Latn', 'ind_Latn'], augmentation=data_args.augmentation_type)
print('=============')
print('raw_datasets')
print(raw_datasets)
print('=============')
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
if config.is_encoder_decoder:
model = AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
# device_map='auto',
# load_in_8bit=True
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
# device_map='auto',
# load_in_8bit=True
)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Model size: ', count_parameters(model))
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
column_names = raw_datasets["train"].column_names
# Handle Continual Flag
if data_args.continual_type is not None:
# Append training data with rehearsal
# (sample_en_dset, sample_id_dset) = load_rehearsal_dataset(n_samples=data_args.continual_size, random_seed=training_args.seed)
# raw_datasets["train"] = datasets.interleave_datasets([
# datasets.Dataset.from_list(list(sample_en_dset)), datasets.Dataset.from_list(list(sample_id_dset)), raw_datasets["train"]
# ], stopping_strategy='all_exhausted')
sample_dset = load_rehearsal_dataset(n_samples=data_args.continual_size, random_seed=training_args.seed)
sample_dset = datasets.Dataset.from_list(list(sample_dset))
raw_datasets["train"] = datasets.interleave_datasets([sample_dset, raw_datasets["train"]], stopping_strategy='all_exhausted')
def self_prompt(sent1, sent2, lang1, lang2, augmentation_type, is_encoder_decoder):
# Random Choice
if augmentation_type == 'random':
augmentation_type = random.choice(['monolingual', 'translation', 'bilingual'])
elif augmentation_type == 'random-xss':
augmentation_type = random.choice(['monolingual', 'translation', 'bilingual', 'xss'])
elif augmentation_type == 'pair':
augmentation_type = random.choice(['translation', 'bilingual'])
elif augmentation_type == 'pair-xss':
augmentation_type = random.choice(['translation', 'bilingual', 'xss'])
elif augmentation_type == 'bilingual-xss':
augmentation_type = random.choice(['bilingual', 'xss'])
else:
augmentation_types = augmentation_type.split(',')
augmentation_type = random.choice(augmentation_types)
if augmentation_type == 'monolingual':
rand_proba = random.random()
aug_list = None
if rand_proba < 0.24:
aug_list = ['infilling']
elif rand_proba < 0.48:
aug_list = ['deletion']
elif rand_proba < 0.72:
aug_list = ['permutation']
elif rand_proba < 0.8:
aug_list = ['infilling', 'deletion']
elif rand_proba < 0.88:
aug_list = ['infilling', 'permutation']
elif rand_proba < 0.96:
aug_list = ['deletion', 'permutation']
else: # elif rand_proba < 1.0:
aug_list = ['infilling', 'deletion', 'permutation']
# Apply monolingual perturbation
src_text = sent1
tgt_text = sent1
for aug in aug_list:
src_text = do_augment(src_text, aug)
# Apply monolingual prompting
(input_text, output_text) = prompt_monolingual(src_text, tgt_text, lang1, is_encoder_decoder)
elif augmentation_type == 'translation':
# Apply translation prompting
(input_text, output_text) = prompt_translation(sent1, sent2, lang1, lang2, is_encoder_decoder)
elif augmentation_type == 'xss':
# Apply perturbation
rand_proba = random.random()
if rand_proba < 0.5:
label = 'yes'
else:
label = 'no'
rand_proba = random.random()
if rand_proba < 0.24:
aug_list = ['infilling']
elif rand_proba < 0.48:
aug_list = ['deletion']
elif rand_proba < 0.72:
aug_list = ['permutation']
elif rand_proba < 0.8:
aug_list = ['infilling', 'deletion']
elif rand_proba < 0.88:
aug_list = ['infilling', 'permutation']
elif rand_proba < 0.96:
aug_list = ['deletion', 'permutation']
else: # elif rand_proba < 1.0:
aug_list = ['infilling', 'deletion', 'permutation']
# Apply monolingual perturbation
aug_text1 = sent1
aug_text2 = sent2
for aug in aug_list:
aug_text1 = do_augment(aug_text1, aug)
aug_text2 = do_augment(aug_text2, aug)
sent1 = aug_text1
sent2 = aug_text2
# Apply xss prompting
(input_text, output_text) = prompt_xss(sent1, sent2, lang1, lang2, label, is_encoder_decoder)
elif augmentation_type == 'bilingual':
rand_proba = random.random()
aug_list = None
if rand_proba < 0.24:
aug_list = ['infilling']
elif rand_proba < 0.48:
aug_list = ['deletion']
elif rand_proba < 0.72:
aug_list = ['permutation']
elif rand_proba < 0.8:
aug_list = ['infilling', 'deletion']
elif rand_proba < 0.88:
aug_list = ['infilling', 'permutation']
elif rand_proba < 0.96:
aug_list = ['deletion', 'permutation']
else: # elif rand_proba < 1.0:
aug_list = ['infilling', 'deletion', 'permutation']
# Apply bilingual perturbation
src_text = sent2
tgt_text = sent2
con_text = sent1
for aug in aug_list:
src_text = do_augment(src_text, aug)
# Apply bilingual noisy perturbation
(input_text, output_text) = prompt_bilingual(src_text, con_text, tgt_text, lang1, lang2, is_encoder_decoder)
# Return the (input, output) prompt tuple
return (input_text, output_text)
def preprocess_fn(examples):
is_encoder_decoder = config.is_encoder_decoder
augmentation_type = data_args.augmentation_type
if 'inputs' not in examples.keys():
examples['inputs'] = [None for _ in range(len(examples["sentence1"]))]
examples['targets'] = [None for _ in range(len(examples["sentence1"]))]
elif 'sentence1' not in examples.keys():
examples['sentence1'] = [None for _ in range(len(examples["inputs"]))]
examples['sentence2'] = [None for _ in range(len(examples["inputs"]))]
examples['lang1'] = [None for _ in range(len(examples["inputs"]))]
examples['lang2'] = [None for _ in range(len(examples["inputs"]))]
input_data = []
for inputs, targets, sent1, sent2, lang1, lang2 in zip(
examples["inputs"], examples["targets"], examples["sentence1"],
examples["sentence2"], examples["lang1"], examples["lang2"]
):
if inputs is None:
# Build Prompt
input_data.append(self_prompt(sent1, sent2, lang1, lang2, augmentation_type, is_encoder_decoder))
else:
# Use xP3 Prompt data
if is_encoder_decoder:
input_data.append((inputs, targets))
else:
prompt = (f'{inputs} {targets}')
input_data.append((prompt, prompt))
model_inputs = None
if is_encoder_decoder:
inputs, labels = list(map(lambda x: x[0], input_data)), list(map(lambda x: x[1], input_data))
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=False, truncation=True)
labels = tokenizer(labels, max_length=data_args.max_target_length, padding=False, truncation=True)
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
else:
inputs = list(map(lambda x: x[0], input_data))
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=False, truncation=True)
return model_inputs
train_dataset = raw_datasets["train"] # .select([i for i in range(100)])
eval_dataset = raw_datasets["test"] # .select([i for i in range(100)])
train_dataset.set_transform(preprocess_fn)
eval_dataset.set_transform(preprocess_fn)
# Initialize our Trainer
if config.is_encoder_decoder:
collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, padding='longest')
else:
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
training_args.remove_unused_columns = False
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
data_collator=collator
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train()
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
metrics["train_samples"] = len(train_dataset)
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "instruction-tuning"}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
kwargs["dataset"] = data_args.dataset_name
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
if __name__ == "__main__":
main()