-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfew_shot_ppl.py
191 lines (149 loc) · 6.87 KB
/
few_shot_ppl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import matplotlib.pyplot as plt
import numpy as np
import jsonlines
import random
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import argparse
import datetime
from sklearn.metrics import classification_report, accuracy_score, f1_score, recall_score, precision_score, \
confusion_matrix
multi2binary = {
"true" : "true",
"mostly-true": "true",
"half-true": "true",
"barely-true": "false",
"false": "false",
"pants-fire": "false",
"NOT ENOUGH INFO": "false",
"REFUTES": "false",
"SUPPORTS": "true"
}
def load_full_context_with_ppl(data_path, ppl_result_path, isbert=False):
with jsonlines.open(data_path) as reader:
og_objs = [obj for obj in reader]
ppl_results = np.load(ppl_result_path, allow_pickle=True)
all_objs = {
'true': [],
'false': [],
'_': []
}
if 'train' in data_path: # === fever train ===== #
for obj, ppl in zip(og_objs, ppl_results):
label = multi2binary[obj['label']]
claim_id = obj['id']
claim = obj['claim']
evs = obj['evidences'][:3]
ppl = ppl['perplexity']
if isbert:
ppl = abs(ppl)
new_objs = {'ppl': ppl, 'label': label, 'claim': claim, 'evidences': evs, 'claim_id': claim_id}
all_objs[label].append(new_objs)
else: # === fever test ===== #
for obj in og_objs:
label = multi2binary[obj['label']]
claim_id = obj['id']
claim = obj['claim']
evs = obj['evidences'][:3]
row_id = obj['row_id']
ppl = ppl_results[row_id]['perplexity']
if isbert:
ppl = abs(ppl)
new_objs = {'ppl': ppl, 'label': label, 'claim': claim, 'evidences': evs, 'claim_id': claim_id}
all_objs[label].append(new_objs)
return all_objs
def print_stat(ppls):
print("Mean: {:.2f}, Std: {:.2f}".format(np.mean(ppls), np.std(ppls)))
print("Min: {:.2f}, Max: {:.2f}".format(min(ppls), max(ppls)))
print("Median", np.median(ppls))
print("10 percentile: {:.2f}, 75 percentile: {:.2f}".format(np.percentile(ppls, 10), np.percentile(ppls, 75)))
def get_metric(objs, ppl_threshold, is_print=True, for_excel=False):
preds = ['true' if float(obj['ppl']) < ppl_threshold else 'false' for obj in objs]
golds = [obj['label'] for obj in objs]
acc = accuracy_score(golds, preds)
# tn, fp, fn, tp = confusion_matrix(golds, preds).ravel()
false_positive_count = 0
for i in range(len(golds)):
if golds[i] != preds[i]:
if golds[i] == 'false':
false_positive_count += 1
f1_binary = f1_score(golds, preds, pos_label='false', average='binary')
f1_macro = f1_score(golds, preds, pos_label='false', average='macro')
recall = recall_score(golds, preds, pos_label='false', average='binary')
precision = precision_score(golds, preds, pos_label='false', average='binary')
if is_print:
print(
"TH: {}, Acc: {:.4f}, F1-macro: {:.4f}, F1-binary: {:.4f}, Recall:{:.4f}, Precision: {:.4f}, FN Count: {}". \
format(ppl_threshold, acc, f1_macro, f1_binary, recall, precision, false_positive_count))
if for_excel:
print("for excel sheet: \n {},{},{},{},{},{}" \
.format(acc, f1_macro, f1_binary, recall, false_positive_count, ppl_threshold))
return {'acc': acc, 'f1_macro': f1_macro, 'f1_binary': f1_binary, \
'recall': recall, 'fp': false_positive_count, 'th': ppl_threshold}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--covid_data", action="store_true", help="for our own covid dataset")
parser.add_argument("--k", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument(
"--exp_name", default=None, type=str, required=True, help=""
)
parser.add_argument(
"--train_data_file", default=None, type=str, required=False, help="" )
parser.add_argument(
"--train_result_path", default=None, type=str, required=False, help="")
parser.add_argument(
"--aug_test_data_file", default=None, type=str, required=False, help="" )
parser.add_argument(
"--aug_test_result_path", default=None, type=str, required=False, help="")
parser.add_argument(
"--test_data_file", default=None, type=str, required=True, help="")
parser.add_argument(
"--test_result_path", default=None, type=str, required=True, help="")
args = parser.parse_args()
k = args.k # number of shots
isbert = True if 'bert' in args.test_result_path else False
random_seeds = [random.randint(0,10000) for _ in range(3)]
print(random_seeds)
# keep it across the dataset and shot settig (USE SAME FOR ALL MODELS!!!! FAIR COMPARISON)
for seed_ in random_seeds:
random.seed(seed_)
thresholds = [i for i in range(1000)]
test_data_path = args.test_data_file
test_eval_file = args.test_result_path
if args.covid_data:
all_objs = load_full_context_with_ppl(test_data_path, test_eval_file, isbert)
combined_all_objs = all_objs['true'] + all_objs['false']
random.shuffle(combined_all_objs)
train_set = combined_all_objs[:k]
test_set = combined_all_objs[k+1:]
else: #FEVER
test_all_objs = load_full_context_with_ppl(test_data_path, test_eval_file, isbert)
test_combined_all_objs = test_all_objs['true'] + test_all_objs['false']
test_set = test_combined_all_objs
# making train set
train_all_objs = load_full_context_with_ppl(args.train_data_file, args.train_result_path, isbert)
true_train_objs = train_all_objs['true']
false_train_objs = train_all_objs['false']
random.shuffle(true_train_objs)
random.shuffle(false_train_objs)
train_set = true_train_objs[:int(k/2)] + false_train_objs[:int(k/2)]
print("Train set: {} | Test set: {}".format(len(train_set), len(test_set)))
results = []
for ppl_th in thresholds:
result = get_metric(train_set, ppl_th, False)
results.append(result)
f1_macros = [o['f1_macro'] for o in results]
max_macro = max(f1_macros)
optimal_ths = []
for r in results:
if r['f1_macro'] == max_macro:
optimal_th = r['th']
get_metric(train_set, optimal_th, True)
optimal_ths.append(optimal_th)
opt_th = np.mean(optimal_ths)
result_on_test = get_metric(test_set, opt_th, True)
exp_name = args.exp_name
log_path = 'results/few_shot_logs/{}_{}.txt'.format(exp_name, k)
with open(log_path , "a") as writer:
writer.write("\n%s\t%s\t%s\t%s" % (args.test_result_path.split("/")[-1].split(".")[-4], k, seed_, result_on_test))