forked from fanpeace/noise2noise
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_datasets.py
284 lines (217 loc) · 9.84 KB
/
test_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#coding:utf-8
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as tvF
from torch.utils.data import Dataset, DataLoader
from utils import load_hdr_as_tensor
import os
from sys import platform
import numpy as np
import random
from string import ascii_letters
from PIL import Image, ImageFont, ImageDraw
import OpenEXR
from matplotlib import rcParams
rcParams['font.family'] = 'serif'
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
def load_dataset(root_dir, redux, params, shuffled=False, single=False):
"""Loads dataset and returns corresponding data loader."""
# Create Torch dataset
noise = (params.noise_type, params.noise_param)
# Instantiate appropriate dataset class
if params.noise_type == 'mc':
dataset = MonteCarloDataset(root_dir, redux, params.crop_size,
clean_targets=params.clean_targets)
else:
dataset = NoisyDataset(root_dir, redux, params.crop_size, params.resize_size,
clean_targets=params.clean_targets, noise_dist=noise, seed=params.seed)
# Use batch size of 1, if requested (e.g. test set)
if single:
return DataLoader(dataset, batch_size=1, shuffle=shuffled)
else:
return DataLoader(dataset, batch_size=params.batch_size, shuffle=shuffled, num_workers=params.num_workers, drop_last=True)
class AbstractDataset(Dataset):
"""Abstract dataset class for Noise2Noise."""
def __init__(self, root_dir, redux=0, crop_size=128, resize_size=640, clean_targets=False):
"""Initializes abstract dataset."""
super(AbstractDataset, self).__init__()
self.imgs = []
self.root_dir = root_dir
self.redux = redux
self.crop_size = crop_size
self.resize_size = resize_size
self.clean_targets = clean_targets
def _random_crop(self, img_list):
"""Performs random square crop of fixed size.
Works with list so that all items get the same cropped window (e.g. for buffers).
"""
w, h = img_list[0].size
assert w >= self.crop_size and h >= self.crop_size, \
f'Error: Crop size: {self.crop_size}, Image size: ({w}, {h})'
cropped_imgs = []
i = np.random.randint(0, h - self.crop_size + 1)
j = np.random.randint(0, w - self.crop_size + 1)
for img in img_list:
# Resize if dimensions are too small
if min(w, h) < self.crop_size:
img = tvF.resize(img, (self.crop_size, self.crop_size))
# Random crop
cropped_imgs.append(tvF.crop(img, i, j, self.crop_size, self.crop_size))
return cropped_imgs
def _resize(self, img_list):
"""Performs random square crop of fixed size.
Works with list so that all items get the same cropped window (e.g. for buffers).
"""
# w, h = img_list[0].size
# print('===w, h:', w, h)
# assert w >= self.self.resize_size and h >= self.crop_size, \
# f'Error: Crop size: {self.crop_size}, Image size: ({w}, {h})'
resized_imgs = []
for img in img_list:
img = tvF.resize(img, (self.resize_size, self.resize_size))
resized_imgs.append(img)
return resized_imgs
def __getitem__(self, index):
"""Retrieves image from data folder."""
raise NotImplementedError('Abstract method not implemented!')
def __len__(self):
"""Returns length of dataset."""
return len(self.imgs)
class NoisyDataset(AbstractDataset):
"""Class for injecting random noise into dataset."""
def __init__(self, root_dir, redux, crop_size, resize_size, clean_targets=False,
noise_dist=('gaussian', 50.), seed=None):
"""Initializes noisy image dataset."""
super(NoisyDataset, self).__init__(root_dir, redux, crop_size, resize_size, clean_targets)
self.imgs = os.listdir(root_dir)
if redux:
self.imgs = self.imgs[:redux]
# Noise parameters (max std for Gaussian, lambda for Poisson, nb of artifacts for text)
self.noise_type = noise_dist[0]
self.noise_param = noise_dist[1]
self.seed = seed
if self.seed:
np.random.seed(self.seed)
def _add_noise(self, img):
"""Adds Gaussian or Poisson noise to image."""
w, h = img.size
c = len(img.getbands())
# Poisson distribution
# It is unclear how the paper handles this. Poisson noise is not additive,
# it is data dependent, meaning that adding sampled valued from a Poisson
# will change the image intensity...
if self.noise_type == 'poisson':
noise = np.random.poisson(img)
noise_img = img + noise
noise_img = 255 * (noise_img / np.amax(noise_img))
# Normal distribution (default)
else:
if self.seed:
std = self.noise_param
else:
std = np.random.uniform(0, self.noise_param)
noise = np.random.normal(0, std, (h, w, c))
# Add noise and clip
noise_img = np.array(img) + noise
noise_img = np.clip(noise_img, 0, 255).astype(np.uint8)
return Image.fromarray(noise_img)
def _add_text_overlay(self, image):
"""Adds text overlay to images."""
assert self.noise_param < 1, 'Text parameter is an occupancy probability'
w, h = image.size
c = len(image.getbands())
# Choose font and get ready to draw
if platform == 'linux':
font_path = '/red_detection/noise2noise/src/font'
fonts_list_path = [os.path.join(font_path, i) for i in os.listdir(font_path)]
serif = np.random.choice(fonts_list_path, 1)[0]
# serif = '/usr/share/fonts/truetype/dejavu/DejaVuSerif.ttf'
else:
serif = 'Times New Roman.ttf'
font = ImageFont.truetype(serif, np.random.randint(h//10, h//7))
# 添加背景
new_img = Image.new('RGBA', (image.size[0] * 3, image.size[1] * 3), (0, 0, 0, 0))
new_img.paste(image, image.size)
# 添加水印
if random.getrandbits(1):
text = 'Adobe Stock'
else:
length = np.random.randint(10, 25)
text = ''.join(random.choice(ascii_letters) for i in range(length))
font_len = len(text)
rgba_image = new_img.convert('RGBA')
text_overlay = Image.new('RGBA', rgba_image.size, (255, 255, 255, 0))
image_draw = ImageDraw.Draw(text_overlay)
#train
logo_color = (255, 255, 255, np.random.randint(60, 100))
dis_x = np.random.randint(3, 10)
for i in range(0, rgba_image.size[0], rgba_image.size[0]//dis_x):
dis_y = np.random.randint(3, 10)
for j in range(0, rgba_image.size[1], rgba_image.size[1]//dis_y):
image_draw.text((i, j), text, font=font, fill=logo_color)
rotate_degree = np.random.randint(-20, 20)
#
# # test
# logo_color = (255, 255, 255, 100)
# dis_x = np.random.randint(3, 10)
# for i in range(0, rgba_image.size[0], rgba_image.size[0]//dis_x):
# dis_y = np.random.randint(3, 10)
# for j in range(0, rgba_image.size[1], rgba_image.size[1]//dis_y):
# image_draw.text((i, j), text, font=font, fill=logo_color)
# rotate_degree = 0
# ####
text_overlay = text_overlay.rotate(rotate_degree)
image_with_text = Image.alpha_composite(rgba_image, text_overlay)
# 裁切图片
image_with_text = image_with_text.crop((image.size[0], image.size[1], image.size[0] * 2, image.size[1] * 2))
return image_with_text.convert('RGB')
def _corrupt(self, img):
"""Corrupts images (Gaussian, Poisson, or text overlay)."""
if self.noise_type in ['gaussian', 'poisson']:
return self._add_noise(img)
elif self.noise_type == 'text':
return self._add_text_overlay(img)
else:
raise ValueError('Invalid noise type: {}'.format(self.noise_type))
def _add_text_way_two(self, image):
TRANSPARENCY_1 = random.randint(60, 90)
water_path = '/red_detection/noise2noise/src/water_imgs'
waters_list_path = [os.path.join(water_path, i) for i in os.listdir(water_path)]
random_num_1 = random.randint(0, len(waters_list_path)-1)
# print('==random_num_1:', random_num_1)
# print('===random_nums:', random_nums)
water_list_path_1 = waters_list_path[random_num_1]
watermark_img_1 = Image.open(water_list_path_1)
paste_mask_1 = watermark_img_1.split()[3].point(lambda i: i * TRANSPARENCY_1 / 100.)
image.paste(watermark_img_1, (0, 0), mask=paste_mask_1)
image = image.resize((self.resize_size, self.resize_size)).copy()
return image.convert('RGB')
def __getitem__(self, index):
"""Retrieves image from folder and corrupts it."""
# Load PIL image
img_path = os.path.join(self.root_dir, self.imgs[index])
img = Image.open(img_path).convert('RGB')
# img = img.rotate(10)
# if random.getrandbits(1):
# img = Image.fromarray(np.array(img)[:, ::-1, :])
# img.save('./debug.png')
# Random square crop
if self.crop_size != 0:
img = self._random_crop([img])[0]
else:
img = self._resize([img])[0]#不加水印直接测试
# img = self._add_text_way_two(img)#加水印在测试
# Corrupt source image
tmp = self._corrupt(img)
if self.clean_targets:
source = tvF.to_tensor(img)
else:
source = tvF.to_tensor(self._corrupt(img))
# Corrupt target image, but not when clean targets are requested
if self.clean_targets:
target = tvF.to_tensor(img)
else:
target = tvF.to_tensor(self._corrupt(img))
return source, target