-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcnnmodel_fashion.py
39 lines (31 loc) · 1.58 KB
/
cnnmodel_fashion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from keras.models import Sequential
from keras.layers import Dropout, Convolution2D, MaxPooling2D, Flatten, Dense, Activation
class CNNModel:
@staticmethod
def load_inputshape(img_rows, img_cols):
return img_rows, img_cols, 1
@staticmethod
def reshape_input_data(x_train, x_test, img_rows, img_cols):
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
return x_train, x_test
@staticmethod
def load_model(classes=10, img_rows=28, img_cols=28):
input_shape = CNNModel.load_inputshape(img_rows, img_cols)
model = Sequential()
model.add(Convolution2D(input_shape=input_shape, data_format='channels_last', filters=32, kernel_size=(3, 3),
padding="same", activation="relu"))
model.add(Convolution2D(kernel_size=(3, 3), filters=32, activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(rate=0.25))
model.add(Convolution2D(filters=64, kernel_size=(3, 3), padding="same", activation="relu"))
model.add(Convolution2D(filters=64, kernel_size=(3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(rate=0.25))
model.add(Flatten())
#model.add(Dense(units=512, activation="relu"))
model.add(Dense(units=classes, activation="softmax"))
model.compile(optimizer='Adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
return model