-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathinference.py
318 lines (256 loc) · 15.3 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import os
import time
import pickle
import random
from tqdm import tqdm
import argparse
import pandas as pd
import torch
from torch_geometric.loader import DataLoader
import torch.utils.data
from rdkit import RDLogger
torch.set_num_threads(5)
RDLogger.DisableLog('rdApp.*')
from rdkit.Chem import QED
from utils import *
from models import Generator
from new_dataloader import DruggenDataset
from loss import generator_loss
from training_data import load_molecules
from smiles_cor import smi_correct
class Inference(object):
"""Inference class for DrugGEN."""
def __init__(self, config):
if config.set_seed:
np.random.seed(config.seed)
random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["PYTHONHASHSEED"] = str(config.seed)
print(f'Using seed {config.seed}')
self.device = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
# Initialize configurations
self.submodel = config.submodel
self.inference_model = config.inference_model
self.sample_num = config.sample_num
self.correct = config.correct
# Data loader.
self.inf_raw_file = config.inf_raw_file # SMILES containing text file for first dataset.
# Write the full path to file.
self.inf_dataset_file = config.inf_dataset_file # Dataset file name for the first GAN.
# Contains large number of molecules.
self.inf_batch_size = config.inf_batch_size
self.mol_data_dir = config.mol_data_dir # Directory where the dataset files are stored.
self.dataset_name = self.inf_dataset_file.split(".")[0]
self.max_atom = config.max_atom # Model is based on one-shot generation.
# Max atom number for molecules must be specified.
self.features = config.features # Small model uses atom types as node features. (Boolean, False uses atom types only.)
# Additional node features can be added. Please check new_dataloarder.py Line 102.
self.inf_dataset = DruggenDataset(self.mol_data_dir,
self.inf_dataset_file,
self.inf_raw_file,
self.max_atom,
self.features) # Dataset for the first GAN. Custom dataset class from PyG parent class.
# Can create any molecular graph dataset given smiles string.
# Nonisomeric SMILES are suggested but not necessary.
# Uses sparse matrix representation for graphs,
# For computational and speed efficiency.
self.inf_loader = DataLoader(self.inf_dataset,
shuffle=True,
batch_size=self.inf_batch_size,
drop_last=True) # PyG dataloader for the first GAN.
# Atom and bond type dimensions for the construction of the model.
self.atom_decoders = self.decoder_load("atom") # Atom type decoders for first GAN.
# eg. 0:0, 1:6 (C), 2:7 (N), 3:8 (O), 4:9 (F)
self.bond_decoders = self.decoder_load("bond") # Bond type decoders for first GAN.
# eg. 0: (no-bond), 1: (single), 2: (double), 3: (triple), 4: (aromatic)
self.m_dim = len(self.atom_decoders) if not self.features else int(self.inf_loader.dataset[0].x.shape[1]) # Atom type dimension.
self.b_dim = len(self.bond_decoders) # Bond type dimension.
self.vertexes = int(self.inf_loader.dataset[0].x.shape[0]) # Number of nodes in the graph.
# Transformer and Convolution configurations.
self.act = config.act
self.dim = config.dim
self.depth = config.depth
self.heads = config.heads
self.mlp_ratio = config.mlp_ratio
self.dropout = config.dropout
self.build_model()
def build_model(self):
"""Create generators and discriminators."""
self.G = Generator(self.act,
self.vertexes,
self.b_dim,
self.m_dim,
self.dropout,
dim=self.dim,
depth=self.depth,
heads=self.heads,
mlp_ratio=self.mlp_ratio)
self.print_network(self.G, 'G')
self.G.to(self.device)
def decoder_load(self, dictionary_name):
''' Loading the atom and bond decoders'''
with open("DrugGEN/data/decoders/" + dictionary_name + "_" + self.dataset_name + '.pkl', 'rb') as f:
return pickle.load(f)
def print_network(self, model, name):
"""Print out the network information."""
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(model)
print(name)
print("The number of parameters: {}".format(num_params))
def restore_model(self, submodel, model_directory):
"""Restore the trained generator and discriminator."""
print('Loading the model...')
G_path = os.path.join(model_directory, '{}-G.ckpt'.format(submodel))
self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage))
def inference(self):
# Load the trained generator.
self.restore_model(self.submodel, self.inference_model)
# smiles data for metrics calculation.
chembl_smiles = [line for line in open("DrugGEN/data/chembl_train.smi", 'r').read().splitlines()]
chembl_test = [line for line in open("DrugGEN/data/chembl_test.smi", 'r').read().splitlines()]
drug_smiles = [line for line in open("DrugGEN/data/akt_inhibitors.smi", 'r').read().splitlines()]
drug_mols = [Chem.MolFromSmiles(smi) for smi in drug_smiles]
drug_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in drug_mols if x is not None]
# Make directories if not exist.
if not os.path.exists("DrugGEN/experiments/inference/{}".format(self.submodel)):
os.makedirs("DrugGEN/experiments/inference/{}".format(self.submodel))
if self.correct:
correct = smi_correct(self.submodel, "DrugGEN_/experiments/inference/{}".format(self.submodel))
search_res = pd.DataFrame(columns=["submodel", "validity",
"uniqueness", "novelty",
"novelty_test", "AKT_novelty",
"max_len", "mean_atom_type",
"snn_chembl", "snn_akt", "IntDiv", "qed"])
self.G.eval()
start_time = time.time()
metric_calc_dr = []
uniqueness_calc = []
real_smiles_snn = []
nodes_sample = torch.Tensor(size=[1,45,1]).to(self.device)
f = open("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel), "w")
f.write("SMILES")
f.write("\n")
val_counter = 0
none_counter = 0
# Inference mode
with torch.inference_mode():
pbar = tqdm(range(self.sample_num))
pbar.set_description('Inference mode for {} model started'.format(self.submodel))
for i, data in enumerate(self.inf_loader):
val_counter += 1
# Preprocess dataset
_, a_tensor, x_tensor = load_molecules(
data=data,
batch_size=self.inf_batch_size,
device=self.device,
b_dim=self.b_dim,
m_dim=self.m_dim,
)
_, _, node_sample, edge_sample = self.G(a_tensor, x_tensor)
g_edges_hat_sample = torch.max(edge_sample, -1)[1]
g_nodes_hat_sample = torch.max(node_sample, -1)[1]
fake_mol_g = [self.inf_dataset.matrices2mol_drugs(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=False, file_name=self.dataset_name)
for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)]
a_tensor_sample = torch.max(a_tensor, -1)[1]
x_tensor_sample = torch.max(x_tensor, -1)[1]
real_mols = [self.inf_dataset.matrices2mol_drugs(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True, file_name=self.dataset_name)
for e_, n_ in zip(a_tensor_sample, x_tensor_sample)]
inference_drugs = [None if line is None else Chem.MolToSmiles(line) for line in fake_mol_g]
inference_drugs = [None if x is None else max(x.split('.'), key=len) for x in inference_drugs]
for molecules in inference_drugs:
if molecules is None:
none_counter += 1
for molecules in inference_drugs:
if molecules is not None:
molecules = molecules.replace("*", "C")
f.write(molecules)
f.write("\n")
uniqueness_calc.append(molecules)
nodes_sample = torch.cat((nodes_sample, g_nodes_hat_sample.view(1,45,1)), 0)
pbar.update(1)
metric_calc_dr.append(molecules)
real_smiles_snn.append(real_mols[0])
generation_number = len([x for x in metric_calc_dr if x is not None])
if generation_number == self.sample_num or none_counter == self.sample_num:
break
f.close()
print("Inference completed, starting metrics calculation.")
if self.correct:
corrected = correct.correct("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel))
gen_smi = corrected["SMILES"].tolist()
else:
gen_smi = pd.read_csv("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel))["SMILES"].tolist()
et = time.time() - start_time
gen_vecs = [AllChem.GetMorganFingerprintAsBitVect(Chem.MolFromSmiles(x), 2, nBits=1024) for x in uniqueness_calc if Chem.MolFromSmiles(x) is not None]
real_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in real_smiles_snn if x is not None]
print("Inference mode is lasted for {:.2f} seconds".format(et))
print("Metrics calculation started using MOSES.")
if self.correct:
val = round(len(gen_smi)/self.sample_num,3)
print("Validity: ", val, "\n")
else:
val = round(fraction_valid(gen_smi),3)
print("Validity: ", val, "\n")
uniq = round(fraction_unique(gen_smi),3)
nov = round(novelty(gen_smi, chembl_smiles),3)
nov_test = round(novelty(gen_smi, chembl_test),3)
akt_nov = round(novelty(gen_smi, drug_smiles),3)
max_len = round(Metrics.max_component(gen_smi, self.vertexes),3)
mean_atom = round(Metrics.mean_atom_type(nodes_sample),3)
snn_chembl = round(average_agg_tanimoto(np.array(real_vecs), np.array(gen_vecs)),3)
snn_akt = round(average_agg_tanimoto(np.array(drug_vecs), np.array(gen_vecs)),3)
int_div = round(internal_diversity(np.array(gen_vecs)),3)
qed = round(np.mean([QED.qed(Chem.MolFromSmiles(x)) for x in gen_smi if Chem.MolFromSmiles(x) is not None]),3)
print("Uniqueness: ", uniq, "\n")
print("Novelty: ", nov, "\n")
print("Novelty_test: ", nov_test, "\n")
print("AKT_novelty: ", akt_nov, "\n")
print("max_len: ", max_len, "\n")
print("mean_atom_type: ", mean_atom, "\n")
print("snn_chembl: ", snn_chembl, "\n")
print("snn_akt: ", snn_akt, "\n")
print("IntDiv: ", int_div, "\n")
print("QED: ", qed, "\n")
print("Metrics are calculated.")
model_res = pd.DataFrame({"submodel": [self.submodel], "validity": [val],
"uniqueness": [uniq], "novelty": [nov],
"novelty_test": [nov_test], "AKT_novelty": [akt_nov],
"max_len": [max_len], "mean_atom_type": [mean_atom],
"snn_chembl": [snn_chembl], "snn_akt": [snn_akt], "IntDiv": [int_div], "qed": [qed]})
search_res = pd.concat([search_res, model_res], axis=0)
os.remove("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel))
search_res.to_csv("DrugGEN/experiments/inference/{}/inference_results.csv".format(self.submodel), index=False)
generatedsmiles = pd.DataFrame({"SMILES": gen_smi})
generatedsmiles.to_csv("DrugGEN/experiments/inference/{}/inference_drugs.csv".format(self.submodel), index=False)
if __name__=="__main__":
parser = argparse.ArgumentParser()
# Inference configuration.
parser.add_argument('--submodel', type=str, default="DrugGEN", help="Chose model subtype: DrugGEN, NoTarget", choices=['DrugGEN', 'NoTarget'])
parser.add_argument('--inference_model', type=str, help="Path to the model for inference")
parser.add_argument('--sample_num', type=int, default=100, help='inference samples')
parser.add_argument('--correct', type=str2bool, default=False, help='Correct smiles')
# Data configuration.
parser.add_argument('--inf_dataset_file', type=str, default='chembl45_test.pt')
parser.add_argument('--inf_raw_file', type=str, default='DrugGEN/data/chembl_test.smi')
parser.add_argument('--inf_batch_size', type=int, default=1, help='Batch size for inference')
parser.add_argument('--mol_data_dir', type=str, default='DrugGEN/data')
parser.add_argument('--features', type=str2bool, default=False, help='features dimension for nodes')
# Model configuration.
parser.add_argument('--act', type=str, default="relu", help="Activation function for the model.", choices=['relu', 'tanh', 'leaky', 'sigmoid'])
parser.add_argument('--max_atom', type=int, default=45, help='Max atom number for molecules must be specified.')
parser.add_argument('--dim', type=int, default=128, help='Dimension of the Transformer Encoder model for the GAN.')
parser.add_argument('--depth', type=int, default=1, help='Depth of the Transformer model from the GAN.')
parser.add_argument('--heads', type=int, default=8, help='Number of heads for the MultiHeadAttention module from the GAN.')
parser.add_argument('--mlp_ratio', type=int, default=3, help='MLP ratio for the Transformer.')
parser.add_argument('--dropout', type=float, default=0., help='dropout rate')
# Seed configuration.
parser.add_argument('--set_seed', type=bool, default=False, help='set seed for reproducibility')
parser.add_argument('--seed', type=int, default=1, help='seed for reproducibility')
config = parser.parse_args()
inference = Inference(config)
inference.inference()