-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
200 lines (162 loc) · 7.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
# from transformers import BertTokenizer, BertModel, BertConfig
# Set the device to use for training
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class TransformerModel(nn.Module):
def __init__(self, vocab_size):
super().__init__()
self.embedding_src = nn.Embedding(vocab_size, 512)
self.embedding_tgt = nn.Embedding(vocab_size, 512)
from model import Transformer
self.transformer = Transformer(Nx=6,
output_vocab_size=vocab_size
)
def forward(self, src, tgt):
src_embed = self.embedding_src(src)
tgt_embed = self.embedding_tgt(tgt)
output = self.transformer(src_embed, tgt_embed)
# output = self.fc(output)
return output, tgt_embed
# Define the Transformer model
# class TransformerModel(nn.Module):
# def __init__(self, num_tokens):
# super(TransformerModel, self).__init__()
# self.config = BertConfig.from_pretrained('bert-base-uncased', num_labels=num_tokens)
# self.encoder = BertModel.from_pretrained('bert-base-uncased', config=self.config)
# self.decoder = nn.Linear(self.config.hidden_size, num_tokens)
# def forward(self, encoder_input_ids, decoder_input_ids):
# encoder_output = self.encoder(encoder_input_ids)[0]
# decoder_output = self.decoder(encoder_output)
# return decoder_output
# Define the dataset
import pandas as pd
import torch
from torch.utils.data import Dataset
# Define the special tokens
PAD_TOKEN = 0
UNK_TOKEN = 1
BOS_TOKEN = 2
EOS_TOKEN = 3
# Define the dataset class
class CustomDataset(Dataset):
def __init__(self, data, max_len):
self.encoder_inputs = data['encoder_input'].values
self.decoder_inputs = data['decoder_input'].values
self.max_len = max_len
self.vocab = {'<PAD>': PAD_TOKEN, '<UNK>': UNK_TOKEN, '<BOS>': BOS_TOKEN, '<EOS>': EOS_TOKEN}
self.reverse_vocab = {PAD_TOKEN: '<PAD>', UNK_TOKEN: '<UNK>', BOS_TOKEN: '<BOS>', EOS_TOKEN: '<EOS>'}
self.vocab_size = 4
# Build the vocabulary
self.build_vocab()
def __len__(self):
return len(self.encoder_inputs)
def __getitem__(self, idx):
encoder_input = self.encoder_inputs[idx]
decoder_input = self.decoder_inputs[idx]
# Convert the input sequences to lists of tokens
encoder_tokens = self.tokenize(encoder_input, is_encoder=True)
decoder_tokens = self.tokenize(decoder_input, is_encoder=False)
# Pad the input sequences
encoder_tokens = self.pad(encoder_tokens, is_encoder=True)
decoder_tokens = self.pad(decoder_tokens, is_encoder=False)
# Convert to PyTorch tensors
encoder_input_ids = torch.tensor(encoder_tokens).unsqueeze(0)
decoder_input_ids = torch.tensor(decoder_tokens).unsqueeze(0)
return encoder_input_ids, decoder_input_ids
def build_vocab(self):
for sentence in self.encoder_inputs:
for token in sentence.split():
if token not in self.vocab:
self.vocab[token] = self.vocab_size
self.reverse_vocab[self.vocab_size] = token
self.vocab_size += 1
for sentence in self.decoder_inputs:
for token in sentence.split():
if token not in self.vocab:
self.vocab[token] = self.vocab_size
self.reverse_vocab[self.vocab_size] = token
self.vocab_size += 1
def tokenize(self, sentence, is_encoder=True):
tokens = []
if is_encoder:
tokens.append(BOS_TOKEN)
for token in sentence.split():
if token in self.vocab:
tokens.append(self.vocab[token])
else:
tokens.append(UNK_TOKEN)
if not is_encoder:
tokens.append(EOS_TOKEN)
return tokens
def pad(self, tokens, is_encoder=True):
if is_encoder:
padded_tokens = [BOS_TOKEN] + tokens + [PAD_TOKEN] * (self.max_len - len(tokens) - 1)
else:
padded_tokens = tokens + [EOS_TOKEN] + [PAD_TOKEN] * (self.max_len - len(tokens) - 1)
return padded_tokens
# Load the data into a DataFrame
# data = pd.read_csv('data.csv')
# Define the maximum sequence length
max_len = 256
# Define the dataset
df=None
file1_path = 'dev_test/dev.en'
file2_path = 'dev_test/dev.hi'
with open(file1_path, 'r', errors='ignore') as f1, open(file2_path, 'r', errors='ignore') as f2:
file1_lines = f1.readlines()
file2_lines = f2.readlines()
# Create a dictionary with the data from both files
data_dict = {'encoder_input': file1_lines, 'decoder_input': file2_lines}
# Convert the dictionary to a pandas DataFrame
df = pd.DataFrame(data_dict)
dataset = CustomDataset(df, max_len)
# Define the vocabulary size
vocab_size = dataset.vocab_size
# Define the training function
def train(model, train_dataloader, optimizer, criterion, num_epochs):
model.train()
for epoch in range(num_epochs):
epoch_loss = 0
for encoder_input_ids, decoder_input_ids in train_dataloader:
encoder_input_ids = encoder_input_ids.squeeze(1)
# .to(device)
decoder_input_ids = decoder_input_ids.squeeze(1)
# .to(device)
# Zero out the gradients
optimizer.zero_grad()
# Get the model's predictions
print(encoder_input_ids.size())
print(decoder_input_ids[:, :-1].size())
output = model(encoder_input_ids, decoder_input_ids)
print("output size - ", output[0].size())
print("decoder input size - ", output[1].size())
# Compute the loss
# loss = criterion(output.view(-1, output.shape[-1]), decoder_input_ids[:, 1:].view(-1))
loss = criterion(output[0], output[1])
# Backpropagate the gradients
loss.backward()
optimizer.step()
# Add the batch loss to the epoch loss
epoch_loss += loss.item()
print("current epoch loss", epoch_loss)
# Print the epoch loss
print(f"Epoch {epoch+1} loss: {epoch_loss/len(train_dataloader)}")
# Load the data into a DataFrame
# data = pd.read_csv('data.csv')
# Define the number of tokens (including the special tokens)
num_tokens = 10000
# Define the model
model = TransformerModel(num_tokens)
# .to(device)
# Define the optimizer and loss function
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
# Define the dataset and dataloader
# dataset = CustomDataset(data)
train_dataloader = DataLoader(dataset, batch_size=50)
# Train the model
train(model, train_dataloader, optimizer, criterion, num_epochs=10)