-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathq_net.py
174 lines (136 loc) · 5.59 KB
/
q_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from __future__ import print_function
import os
import sys
import numpy as np
import torch
import networkx as nx
import random
from torch.autograd import Variable
from torch.nn.parameter import Parameter
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
sys.path.append('%s/../../pytorch_structure2vec/s2v_lib' % os.path.dirname(os.path.realpath(__file__)))
from pytorch_util import weights_init
sys.path.append('%s/../common' % os.path.dirname(os.path.realpath(__file__)))
from graph_embedding import EmbedMeanField, EmbedLoopyBP
from cmd_args import cmd_args
from modules.custom_mod import JaggedMaxModule
from rl_common import local_args
def greedy_actions(q_values, v_p, banned_list):
actions = []
offset = 0
banned_acts = []
prefix_sum = v_p.data.cpu().numpy()
for i in range(len(prefix_sum)):
n_nodes = prefix_sum[i] - offset
if banned_list is not None and banned_list[i] is not None:
for j in banned_list[i]:
banned_acts.append(offset + j)
offset = prefix_sum[i]
q_values = q_values.data.clone()
if len(banned_acts):
q_values[banned_acts, :] = np.finfo(np.float64).min
jmax = JaggedMaxModule()
values, actions = jmax(Variable(q_values), v_p)
return actions.data, values.data
class QNet(nn.Module):
def __init__(self, s2v_module = None):
super(QNet, self).__init__()
if cmd_args.gm == 'mean_field':
model = EmbedMeanField
elif cmd_args.gm == 'loopy_bp':
model = EmbedLoopyBP
else:
print('unknown gm %s' % cmd_args.gm)
sys.exit()
if cmd_args.out_dim == 0:
embed_dim = cmd_args.latent_dim
else:
embed_dim = cmd_args.out_dim
if local_args.mlp_hidden:
self.linear_1 = nn.Linear(embed_dim * 2, local_args.mlp_hidden)
self.linear_out = nn.Linear(local_args.mlp_hidden, 1)
else:
self.linear_out = nn.Linear(embed_dim * 2, 1)
weights_init(self)
if s2v_module is None:
self.s2v = model(latent_dim=cmd_args.latent_dim,
output_dim=cmd_args.out_dim,
num_node_feats=2,
num_edge_feats=0,
max_lv=cmd_args.max_lv)
else:
self.s2v = s2v_module
def PrepareFeatures(self, batch_graph, picked_nodes):
n_nodes = 0
prefix_sum = []
picked_ones = []
for i in range(len(batch_graph)):
if picked_nodes is not None and picked_nodes[i] is not None:
assert picked_nodes[i] >= 0 and picked_nodes[i] < batch_graph[i].num_nodes
picked_ones.append(n_nodes + picked_nodes[i])
n_nodes += batch_graph[i].num_nodes
prefix_sum.append(n_nodes)
node_feat = torch.zeros(n_nodes, 2)
node_feat[:, 0] = 1.0
if len(picked_ones):
node_feat.numpy()[picked_ones, 1] = 1.0
node_feat.numpy()[picked_ones, 0] = 0.0
return node_feat, torch.LongTensor(prefix_sum)
def add_offset(self, actions, v_p):
prefix_sum = v_p.data.cpu().numpy()
shifted = []
for i in range(len(prefix_sum)):
if i > 0:
offset = prefix_sum[i - 1]
else:
offset = 0
shifted.append(actions[i] + offset)
return shifted
def rep_global_embed(self, graph_embed, v_p):
prefix_sum = v_p.data.cpu().numpy()
rep_idx = []
for i in range(len(prefix_sum)):
if i == 0:
n_nodes = prefix_sum[i]
else:
n_nodes = prefix_sum[i] - prefix_sum[i - 1]
rep_idx += [i] * n_nodes
rep_idx = Variable(torch.LongTensor(rep_idx))
if cmd_args.ctx == 'gpu':
rep_idx = rep_idx.cuda()
graph_embed = torch.index_select(graph_embed, 0, rep_idx)
return graph_embed
def forward(self, time_t, states, actions, greedy_acts = False):
batch_graph, picked_nodes, banned_list = zip(*states)
node_feat, prefix_sum = self.PrepareFeatures(batch_graph, picked_nodes)
if cmd_args.ctx == 'gpu':
node_feat = node_feat.cuda()
prefix_sum = prefix_sum.cuda()
prefix_sum = Variable(prefix_sum)
embed, graph_embed = self.s2v(batch_graph, node_feat, None, pool_global=True)
if actions is None:
graph_embed = self.rep_global_embed(graph_embed, prefix_sum)
else:
shifted = self.add_offset(actions, prefix_sum)
embed = embed[shifted, :]
embed_s_a = torch.cat((embed, graph_embed), dim=1)
if local_args.mlp_hidden:
embed_s_a = F.relu( self.linear_1(embed_s_a) )
raw_pred = self.linear_out(embed_s_a)
if greedy_acts:
actions, _ = greedy_actions(raw_pred, prefix_sum, banned_list)
return actions, raw_pred, prefix_sum
class NStepQNet(nn.Module):
def __init__(self, num_steps, s2v_module = None):
super(NStepQNet, self).__init__()
list_mod = [QNet(s2v_module)]
for i in range(1, num_steps):
list_mod.append(QNet(list_mod[0].s2v))
self.list_mod = nn.ModuleList(list_mod)
self.num_steps = num_steps
def forward(self, time_t, states, actions, greedy_acts = False):
assert time_t >= 0 and time_t < self.num_steps
return self.list_mod[time_t](time_t, states, actions, greedy_acts)