-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhistogram_equalization.py
66 lines (51 loc) · 2.65 KB
/
histogram_equalization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#------------------------------------#
# Author: Yueh-Lin Tsou #
# Update: 7/20/2019 #
# E-mail: hank630280888@gmail.com #
#------------------------------------#
"""---------------------------------
Implement Histogram Equalization
---------------------------------"""
import pylab as pl # matplotlib's subpackage as pl for graph
import numpy as np # use numpy library as np for array object
import argparse
import cv2 # opencv-python
# ------------------ Do image histogram equalization ------------------ #
def Hist_Equal(img):
image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# convert image to grayscal
# count values for each pixels(image histogram)
x, y = image.shape # get image size x*y, for a image with x rows and y columns
histo = [0.0] * 256 # Initializes a 256 array to hold the number of
# occurrences of each gray level
for i in range(0, x): # count each pixel value(gray level) from 0 to x
for j in range(0, y): # count each pixel value(gray level) from 0 to y
histo[image[i, j]]+=1 # count the number of occurrences of each gray level
# cdf and new pixels values
cdf = np.cumsum(np.array(histo)) # cumulative distribution function
trans_val = np.uint8((cdf-cdf[0])/((x*y)-cdf[0])*255) # calculate transfer value
# applying transfered values for each pixels
new_img = np.zeros_like(image) # Return an empty array new_img with shape and type of input.
for i in range(0, x): # count each pixel value(gray level) from 0 to x
for j in range(0, y): # count each pixel value(gray level) from 0 to y
new_img[i, j] = trans_val[image[i, j]] #fill the equalization result in the array
# show original and equalized image
pl.subplot(121) # image position 1 row, 2 column, first position
pl.imshow(image) # show image "grayimg"
pl.title('original image') # graph title "original image"
pl.set_cmap('gray') # show in gray scale
pl.subplot(122) # image position 1 row, 2 column, second position
pl.imshow(new_img) # show image "grayimg"
pl.title('equalized image') # graph title "original image"
pl.set_cmap('gray') # show in gray scale
pl.show() # output image
# -------------------------- main -------------------------- #
if __name__ == '__main__':
# read one input from terminal
# command line >> python histogram_equalization.py -i input_image.jpg
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required = True, help="Path to the input image")
args = vars(ap.parse_args())
# read image
image = cv2.imread(args["image"])
# function
Hist_Equal(image) # do histogram equalization