This is a mindspore implementation of the AGW baseline purposed in Deep Learning for Person Re-identification: A Survey and Outlook. arXiv
- Python 3.7
- Mindspore 1.5.0 (Ascend)
- prepare Imagenet pretrained resnet50 checkpoints
- organize datasets as below
├──"data_path" in agw_config.yaml
├──market1501
├──Market-1501
├──bounding_box_train
├──query
├──bounding_box_test
├──dukemtmc-reid
├──DukeMTMC-reID
├──bounding_box_train
├──query
├──bounding_box_test
├──cuhk03
├──cuhk03_release
├──cuhk-03.mat
├──cuhk03_new_protocol_config_labeled.mat
├──cuhk03_new_protocol_config_detected.mat
├──msmt17
├──MSMT17_V1
├──train
├──test
├──list_val.txt
├──list_train.txt
├──list_query.txt
├──list_query.txt
- Train
export DEVICE_ID=0
python train.py --source=DATASET_NAME > $LOG_DIR 2>&1
- Evaluate
python eval.py --target=DATASET_NAME --checkpoint_path=TRAINED_AGW_CHECKPOINTS > $LOG_DIR 2>&1
where checkpoints are saved in "output_path" in config and is set to ./output
in default.