-
Notifications
You must be signed in to change notification settings - Fork 0
/
Kconfig
2118 lines (1772 loc) · 68 KB
/
Kconfig
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
config ARCH
string
option env="ARCH"
config KERNELVERSION
string
option env="KERNELVERSION"
config DEFCONFIG_LIST
string
depends on !UML
option defconfig_list
default "/lib/modules/$UNAME_RELEASE/.config"
default "/etc/kernel-config"
default "/boot/config-$UNAME_RELEASE"
default "$ARCH_DEFCONFIG"
default "arch/$ARCH/defconfig"
config CONSTRUCTORS
bool
depends on !UML
config IRQ_WORK
bool
config BUILDTIME_EXTABLE_SORT
bool
menu "General setup"
config BROKEN
bool
config BROKEN_ON_SMP
bool
depends on BROKEN || !SMP
default y
config INIT_ENV_ARG_LIMIT
int
default 32 if !UML
default 128 if UML
help
Maximum of each of the number of arguments and environment
variables passed to init from the kernel command line.
config CROSS_COMPILE
string "Cross-compiler tool prefix"
help
Same as running 'make CROSS_COMPILE=prefix-' but stored for
default make runs in this kernel build directory. You don't
need to set this unless you want the configured kernel build
directory to select the cross-compiler automatically.
config COMPILE_TEST
bool "Compile also drivers which will not load"
default n
help
Some drivers can be compiled on a different platform than they are
intended to be run on. Despite they cannot be loaded there (or even
when they load they cannot be used due to missing HW support),
developers still, opposing to distributors, might want to build such
drivers to compile-test them.
If you are a developer and want to build everything available, say Y
here. If you are a user/distributor, say N here to exclude useless
drivers to be distributed.
config LOCALVERSION
string "Local version - append to kernel release"
help
Append an extra string to the end of your kernel version.
This will show up when you type uname, for example.
The string you set here will be appended after the contents of
any files with a filename matching localversion* in your
object and source tree, in that order. Your total string can
be a maximum of 64 characters.
config LOCALVERSION_AUTO
bool "Automatically append version information to the version string"
default y
help
This will try to automatically determine if the current tree is a
release tree by looking for git tags that belong to the current
top of tree revision.
A string of the format -gxxxxxxxx will be added to the localversion
if a git-based tree is found. The string generated by this will be
appended after any matching localversion* files, and after the value
set in CONFIG_LOCALVERSION.
(The actual string used here is the first eight characters produced
by running the command:
$ git rev-parse --verify HEAD
which is done within the script "scripts/setlocalversion".)
config HAVE_KERNEL_GZIP
bool
config HAVE_KERNEL_BZIP2
bool
config HAVE_KERNEL_LZMA
bool
config HAVE_KERNEL_XZ
bool
config HAVE_KERNEL_LZO
bool
config HAVE_KERNEL_LZ4
bool
choice
prompt "Kernel compression mode"
default KERNEL_GZIP
depends on HAVE_KERNEL_GZIP || HAVE_KERNEL_BZIP2 || HAVE_KERNEL_LZMA || HAVE_KERNEL_XZ || HAVE_KERNEL_LZO || HAVE_KERNEL_LZ4
help
The linux kernel is a kind of self-extracting executable.
Several compression algorithms are available, which differ
in efficiency, compression and decompression speed.
Compression speed is only relevant when building a kernel.
Decompression speed is relevant at each boot.
If you have any problems with bzip2 or lzma compressed
kernels, mail me (Alain Knaff) <alain@knaff.lu>. (An older
version of this functionality (bzip2 only), for 2.4, was
supplied by Christian Ludwig)
High compression options are mostly useful for users, who
are low on disk space (embedded systems), but for whom ram
size matters less.
If in doubt, select 'gzip'
config KERNEL_GZIP
bool "Gzip"
depends on HAVE_KERNEL_GZIP
help
The old and tried gzip compression. It provides a good balance
between compression ratio and decompression speed.
config KERNEL_BZIP2
bool "Bzip2"
depends on HAVE_KERNEL_BZIP2
help
Its compression ratio and speed is intermediate.
Decompression speed is slowest among the choices. The kernel
size is about 10% smaller with bzip2, in comparison to gzip.
Bzip2 uses a large amount of memory. For modern kernels you
will need at least 8MB RAM or more for booting.
config KERNEL_LZMA
bool "LZMA"
depends on HAVE_KERNEL_LZMA
help
This compression algorithm's ratio is best. Decompression speed
is between gzip and bzip2. Compression is slowest.
The kernel size is about 33% smaller with LZMA in comparison to gzip.
config KERNEL_XZ
bool "XZ"
depends on HAVE_KERNEL_XZ
help
XZ uses the LZMA2 algorithm and instruction set specific
BCJ filters which can improve compression ratio of executable
code. The size of the kernel is about 30% smaller with XZ in
comparison to gzip. On architectures for which there is a BCJ
filter (i386, x86_64, ARM, IA-64, PowerPC, and SPARC), XZ
will create a few percent smaller kernel than plain LZMA.
The speed is about the same as with LZMA: The decompression
speed of XZ is better than that of bzip2 but worse than gzip
and LZO. Compression is slow.
config KERNEL_LZO
bool "LZO"
depends on HAVE_KERNEL_LZO
help
Its compression ratio is the poorest among the choices. The kernel
size is about 10% bigger than gzip; however its speed
(both compression and decompression) is the fastest.
config KERNEL_LZ4
bool "LZ4"
depends on HAVE_KERNEL_LZ4
help
LZ4 is an LZ77-type compressor with a fixed, byte-oriented encoding.
A preliminary version of LZ4 de/compression tool is available at
<https://code.google.com/p/lz4/>.
Its compression ratio is worse than LZO. The size of the kernel
is about 8% bigger than LZO. But the decompression speed is
faster than LZO.
endchoice
config DEFAULT_HOSTNAME
string "Default hostname"
default "(none)"
help
This option determines the default system hostname before userspace
calls sethostname(2). The kernel traditionally uses "(none)" here,
but you may wish to use a different default here to make a minimal
system more usable with less configuration.
config SWAP
bool "Support for paging of anonymous memory (swap)"
depends on MMU && BLOCK
default y
help
This option allows you to choose whether you want to have support
for so called swap devices or swap files in your kernel that are
used to provide more virtual memory than the actual RAM present
in your computer. If unsure say Y.
config SYSVIPC
bool "System V IPC"
---help---
Inter Process Communication is a suite of library functions and
system calls which let processes (running programs) synchronize and
exchange information. It is generally considered to be a good thing,
and some programs won't run unless you say Y here. In particular, if
you want to run the DOS emulator dosemu under Linux (read the
DOSEMU-HOWTO, available from <http://www.tldp.org/docs.html#howto>),
you'll need to say Y here.
You can find documentation about IPC with "info ipc" and also in
section 6.4 of the Linux Programmer's Guide, available from
<http://www.tldp.org/guides.html>.
config SYSVIPC_SYSCTL
bool
depends on SYSVIPC
depends on SYSCTL
default y
config POSIX_MQUEUE
bool "POSIX Message Queues"
depends on NET
---help---
POSIX variant of message queues is a part of IPC. In POSIX message
queues every message has a priority which decides about succession
of receiving it by a process. If you want to compile and run
programs written e.g. for Solaris with use of its POSIX message
queues (functions mq_*) say Y here.
POSIX message queues are visible as a filesystem called 'mqueue'
and can be mounted somewhere if you want to do filesystem
operations on message queues.
If unsure, say Y.
config POSIX_MQUEUE_SYSCTL
bool
depends on POSIX_MQUEUE
depends on SYSCTL
default y
config CROSS_MEMORY_ATTACH
bool "Enable process_vm_readv/writev syscalls"
depends on MMU
default y
help
Enabling this option adds the system calls process_vm_readv and
process_vm_writev which allow a process with the correct privileges
to directly read from or write to another process' address space.
See the man page for more details.
config FHANDLE
bool "open by fhandle syscalls"
select EXPORTFS
help
If you say Y here, a user level program will be able to map
file names to handle and then later use the handle for
different file system operations. This is useful in implementing
userspace file servers, which now track files using handles instead
of names. The handle would remain the same even if file names
get renamed. Enables open_by_handle_at(2) and name_to_handle_at(2)
syscalls.
config USELIB
bool "uselib syscall"
default y
help
This option enables the uselib syscall, a system call used in the
dynamic linker from libc5 and earlier. glibc does not use this
system call. If you intend to run programs built on libc5 or
earlier, you may need to enable this syscall. Current systems
running glibc can safely disable this.
config AUDIT
bool "Auditing support"
depends on NET
help
Enable auditing infrastructure that can be used with another
kernel subsystem, such as SELinux (which requires this for
logging of avc messages output). Does not do system-call
auditing without CONFIG_AUDITSYSCALL.
config HAVE_ARCH_AUDITSYSCALL
bool
config AUDITSYSCALL
bool "Enable system-call auditing support"
depends on AUDIT && HAVE_ARCH_AUDITSYSCALL
default y if SECURITY_SELINUX
help
Enable low-overhead system-call auditing infrastructure that
can be used independently or with another kernel subsystem,
such as SELinux.
config AUDIT_WATCH
def_bool y
depends on AUDITSYSCALL
select FSNOTIFY
config AUDIT_TREE
def_bool y
depends on AUDITSYSCALL
select FSNOTIFY
source "kernel/irq/Kconfig"
source "kernel/time/Kconfig"
menu "CPU/Task time and stats accounting"
config VIRT_CPU_ACCOUNTING
bool
choice
prompt "Cputime accounting"
default TICK_CPU_ACCOUNTING if !PPC64
default VIRT_CPU_ACCOUNTING_NATIVE if PPC64
# Kind of a stub config for the pure tick based cputime accounting
config TICK_CPU_ACCOUNTING
bool "Simple tick based cputime accounting"
depends on !S390 && !NO_HZ_FULL
help
This is the basic tick based cputime accounting that maintains
statistics about user, system and idle time spent on per jiffies
granularity.
If unsure, say Y.
config VIRT_CPU_ACCOUNTING_NATIVE
bool "Deterministic task and CPU time accounting"
depends on HAVE_VIRT_CPU_ACCOUNTING && !NO_HZ_FULL
select VIRT_CPU_ACCOUNTING
help
Select this option to enable more accurate task and CPU time
accounting. This is done by reading a CPU counter on each
kernel entry and exit and on transitions within the kernel
between system, softirq and hardirq state, so there is a
small performance impact. In the case of s390 or IBM POWER > 5,
this also enables accounting of stolen time on logically-partitioned
systems.
config VIRT_CPU_ACCOUNTING_GEN
bool "Full dynticks CPU time accounting"
depends on HAVE_CONTEXT_TRACKING
depends on HAVE_VIRT_CPU_ACCOUNTING_GEN
select VIRT_CPU_ACCOUNTING
select CONTEXT_TRACKING
help
Select this option to enable task and CPU time accounting on full
dynticks systems. This accounting is implemented by watching every
kernel-user boundaries using the context tracking subsystem.
The accounting is thus performed at the expense of some significant
overhead.
For now this is only useful if you are working on the full
dynticks subsystem development.
If unsure, say N.
config IRQ_TIME_ACCOUNTING
bool "Fine granularity task level IRQ time accounting"
depends on HAVE_IRQ_TIME_ACCOUNTING && !NO_HZ_FULL
help
Select this option to enable fine granularity task irq time
accounting. This is done by reading a timestamp on each
transitions between softirq and hardirq state, so there can be a
small performance impact.
If in doubt, say N here.
endchoice
config SCHED_WALT
bool "Support window based load tracking"
depends on SMP
help
This feature will allow the scheduler to maintain a tunable window
based set of metrics for tasks and runqueues. These metrics can be
used to guide task placement as well as task frequency requirements
for cpufreq governors.
config BSD_PROCESS_ACCT
bool "BSD Process Accounting"
help
If you say Y here, a user level program will be able to instruct the
kernel (via a special system call) to write process accounting
information to a file: whenever a process exits, information about
that process will be appended to the file by the kernel. The
information includes things such as creation time, owning user,
command name, memory usage, controlling terminal etc. (the complete
list is in the struct acct in <file:include/linux/acct.h>). It is
up to the user level program to do useful things with this
information. This is generally a good idea, so say Y.
config BSD_PROCESS_ACCT_V3
bool "BSD Process Accounting version 3 file format"
depends on BSD_PROCESS_ACCT
default n
help
If you say Y here, the process accounting information is written
in a new file format that also logs the process IDs of each
process and it's parent. Note that this file format is incompatible
with previous v0/v1/v2 file formats, so you will need updated tools
for processing it. A preliminary version of these tools is available
at <http://www.gnu.org/software/acct/>.
config TASKSTATS
bool "Export task/process statistics through netlink"
depends on NET
default n
help
Export selected statistics for tasks/processes through the
generic netlink interface. Unlike BSD process accounting, the
statistics are available during the lifetime of tasks/processes as
responses to commands. Like BSD accounting, they are sent to user
space on task exit.
Say N if unsure.
config TASK_DELAY_ACCT
bool "Enable per-task delay accounting"
depends on TASKSTATS
help
Collect information on time spent by a task waiting for system
resources like cpu, synchronous block I/O completion and swapping
in pages. Such statistics can help in setting a task's priorities
relative to other tasks for cpu, io, rss limits etc.
Say N if unsure.
config TASK_XACCT
bool "Enable extended accounting over taskstats"
depends on TASKSTATS
help
Collect extended task accounting data and send the data
to userland for processing over the taskstats interface.
Say N if unsure.
config TASK_IO_ACCOUNTING
bool "Enable per-task storage I/O accounting"
depends on TASK_XACCT
help
Collect information on the number of bytes of storage I/O which this
task has caused.
Say N if unsure.
endmenu # "CPU/Task time and stats accounting"
menu "RCU Subsystem"
choice
prompt "RCU Implementation"
default TREE_RCU
config TREE_RCU
bool "Tree-based hierarchical RCU"
depends on !PREEMPT && SMP
select IRQ_WORK
help
This option selects the RCU implementation that is
designed for very large SMP system with hundreds or
thousands of CPUs. It also scales down nicely to
smaller systems.
config TREE_PREEMPT_RCU
bool "Preemptible tree-based hierarchical RCU"
depends on PREEMPT
select IRQ_WORK
help
This option selects the RCU implementation that is
designed for very large SMP systems with hundreds or
thousands of CPUs, but for which real-time response
is also required. It also scales down nicely to
smaller systems.
Select this option if you are unsure.
config TINY_RCU
bool "UP-only small-memory-footprint RCU"
depends on !PREEMPT && !SMP
help
This option selects the RCU implementation that is
designed for UP systems from which real-time response
is not required. This option greatly reduces the
memory footprint of RCU.
endchoice
config PREEMPT_RCU
def_bool TREE_PREEMPT_RCU
help
This option enables preemptible-RCU code that is common between
TREE_PREEMPT_RCU and, in the old days, TINY_PREEMPT_RCU.
config TASKS_RCU
bool "Task_based RCU implementation using voluntary context switch"
default n
help
This option enables a task-based RCU implementation that uses
only voluntary context switch (not preemption!), idle, and
user-mode execution as quiescent states.
If unsure, say N.
config RCU_STALL_COMMON
def_bool ( TREE_RCU || TREE_PREEMPT_RCU || RCU_TRACE )
help
This option enables RCU CPU stall code that is common between
the TINY and TREE variants of RCU. The purpose is to allow
the tiny variants to disable RCU CPU stall warnings, while
making these warnings mandatory for the tree variants.
config CONTEXT_TRACKING
bool
config RCU_USER_QS
bool "Consider userspace as in RCU extended quiescent state"
depends on HAVE_CONTEXT_TRACKING && SMP
select CONTEXT_TRACKING
help
This option sets hooks on kernel / userspace boundaries and
puts RCU in extended quiescent state when the CPU runs in
userspace. It means that when a CPU runs in userspace, it is
excluded from the global RCU state machine and thus doesn't
try to keep the timer tick on for RCU.
Unless you want to hack and help the development of the full
dynticks mode, you shouldn't enable this option. It also
adds unnecessary overhead.
If unsure say N
config CONTEXT_TRACKING_FORCE
bool "Force context tracking"
depends on CONTEXT_TRACKING
default y if !NO_HZ_FULL
help
The major pre-requirement for full dynticks to work is to
support the context tracking subsystem. But there are also
other dependencies to provide in order to make the full
dynticks working.
This option stands for testing when an arch implements the
context tracking backend but doesn't yet fullfill all the
requirements to make the full dynticks feature working.
Without the full dynticks, there is no way to test the support
for context tracking and the subsystems that rely on it: RCU
userspace extended quiescent state and tickless cputime
accounting. This option copes with the absence of the full
dynticks subsystem by forcing the context tracking on all
CPUs in the system.
Say Y only if you're working on the development of an
architecture backend for the context tracking.
Say N otherwise, this option brings an overhead that you
don't want in production.
config RCU_FANOUT
int "Tree-based hierarchical RCU fanout value"
range 2 64 if 64BIT
range 2 32 if !64BIT
depends on TREE_RCU || TREE_PREEMPT_RCU
default 64 if 64BIT
default 32 if !64BIT
help
This option controls the fanout of hierarchical implementations
of RCU, allowing RCU to work efficiently on machines with
large numbers of CPUs. This value must be at least the fourth
root of NR_CPUS, which allows NR_CPUS to be insanely large.
The default value of RCU_FANOUT should be used for production
systems, but if you are stress-testing the RCU implementation
itself, small RCU_FANOUT values allow you to test large-system
code paths on small(er) systems.
Select a specific number if testing RCU itself.
Take the default if unsure.
config RCU_FANOUT_LEAF
int "Tree-based hierarchical RCU leaf-level fanout value"
range 2 RCU_FANOUT if 64BIT
range 2 RCU_FANOUT if !64BIT
depends on TREE_RCU || TREE_PREEMPT_RCU
default 16
help
This option controls the leaf-level fanout of hierarchical
implementations of RCU, and allows trading off cache misses
against lock contention. Systems that synchronize their
scheduling-clock interrupts for energy-efficiency reasons will
want the default because the smaller leaf-level fanout keeps
lock contention levels acceptably low. Very large systems
(hundreds or thousands of CPUs) will instead want to set this
value to the maximum value possible in order to reduce the
number of cache misses incurred during RCU's grace-period
initialization. These systems tend to run CPU-bound, and thus
are not helped by synchronized interrupts, and thus tend to
skew them, which reduces lock contention enough that large
leaf-level fanouts work well.
Select a specific number if testing RCU itself.
Select the maximum permissible value for large systems.
Take the default if unsure.
config RCU_FANOUT_EXACT
bool "Disable tree-based hierarchical RCU auto-balancing"
depends on TREE_RCU || TREE_PREEMPT_RCU
default n
help
This option forces use of the exact RCU_FANOUT value specified,
regardless of imbalances in the hierarchy. This is useful for
testing RCU itself, and might one day be useful on systems with
strong NUMA behavior.
Without RCU_FANOUT_EXACT, the code will balance the hierarchy.
Say N if unsure.
config RCU_FAST_NO_HZ
bool "Accelerate last non-dyntick-idle CPU's grace periods"
depends on NO_HZ_COMMON && SMP
default n
help
This option causes RCU to attempt to accelerate grace periods in
order to allow CPUs to enter dynticks-idle state more quickly.
On the other hand, this option increases the overhead of the
dynticks-idle checking, thus degrading scheduling latency.
Say Y if energy efficiency is critically important, and you don't
care about real-time response.
Say N if you are unsure.
config TREE_RCU_TRACE
def_bool RCU_TRACE && ( TREE_RCU || TREE_PREEMPT_RCU )
select DEBUG_FS
help
This option provides tracing for the TREE_RCU and
TREE_PREEMPT_RCU implementations, permitting Makefile to
trivially select kernel/rcutree_trace.c.
config RCU_BOOST
bool "Enable RCU priority boosting"
depends on RT_MUTEXES && PREEMPT_RCU
default n
help
This option boosts the priority of preempted RCU readers that
block the current preemptible RCU grace period for too long.
This option also prevents heavy loads from blocking RCU
callback invocation for all flavors of RCU.
Say Y here if you are working with real-time apps or heavy loads
Say N here if you are unsure.
config RCU_BOOST_PRIO
int "Real-time priority to boost RCU readers to"
range 1 99
depends on RCU_BOOST
default 1
help
This option specifies the real-time priority to which long-term
preempted RCU readers are to be boosted. If you are working
with a real-time application that has one or more CPU-bound
threads running at a real-time priority level, you should set
RCU_BOOST_PRIO to a priority higher then the highest-priority
real-time CPU-bound thread. The default RCU_BOOST_PRIO value
of 1 is appropriate in the common case, which is real-time
applications that do not have any CPU-bound threads.
Some real-time applications might not have a single real-time
thread that saturates a given CPU, but instead might have
multiple real-time threads that, taken together, fully utilize
that CPU. In this case, you should set RCU_BOOST_PRIO to
a priority higher than the lowest-priority thread that is
conspiring to prevent the CPU from running any non-real-time
tasks. For example, if one thread at priority 10 and another
thread at priority 5 are between themselves fully consuming
the CPU time on a given CPU, then RCU_BOOST_PRIO should be
set to priority 6 or higher.
Specify the real-time priority, or take the default if unsure.
config RCU_BOOST_DELAY
int "Milliseconds to delay boosting after RCU grace-period start"
range 0 3000
depends on RCU_BOOST
default 500
help
This option specifies the time to wait after the beginning of
a given grace period before priority-boosting preempted RCU
readers blocking that grace period. Note that any RCU reader
blocking an expedited RCU grace period is boosted immediately.
Accept the default if unsure.
config RCU_NOCB_CPU
bool "Offload RCU callback processing from boot-selected CPUs"
depends on TREE_RCU || TREE_PREEMPT_RCU
default n
help
Use this option to reduce OS jitter for aggressive HPC or
real-time workloads. It can also be used to offload RCU
callback invocation to energy-efficient CPUs in battery-powered
asymmetric multiprocessors.
This option offloads callback invocation from the set of
CPUs specified at boot time by the rcu_nocbs parameter.
For each such CPU, a kthread ("rcuox/N") will be created to
invoke callbacks, where the "N" is the CPU being offloaded,
and where the "x" is "b" for RCU-bh, "p" for RCU-preempt, and
"s" for RCU-sched. Nothing prevents this kthread from running
on the specified CPUs, but (1) the kthreads may be preempted
between each callback, and (2) affinity or cgroups can be used
to force the kthreads to run on whatever set of CPUs is desired.
Say Y here if you want to help to debug reduced OS jitter.
Say N here if you are unsure.
choice
prompt "Build-forced no-CBs CPUs"
default RCU_NOCB_CPU_NONE
help
This option allows no-CBs CPUs (whose RCU callbacks are invoked
from kthreads rather than from softirq context) to be specified
at build time. Additional no-CBs CPUs may be specified by
the rcu_nocbs= boot parameter.
config RCU_NOCB_CPU_NONE
bool "No build_forced no-CBs CPUs"
depends on RCU_NOCB_CPU
help
This option does not force any of the CPUs to be no-CBs CPUs.
Only CPUs designated by the rcu_nocbs= boot parameter will be
no-CBs CPUs, whose RCU callbacks will be invoked by per-CPU
kthreads whose names begin with "rcuo". All other CPUs will
invoke their own RCU callbacks in softirq context.
Select this option if you want to choose no-CBs CPUs at
boot time, for example, to allow testing of different no-CBs
configurations without having to rebuild the kernel each time.
config RCU_NOCB_CPU_ZERO
bool "CPU 0 is a build_forced no-CBs CPU"
depends on RCU_NOCB_CPU
help
This option forces CPU 0 to be a no-CBs CPU, so that its RCU
callbacks are invoked by a per-CPU kthread whose name begins
with "rcuo". Additional CPUs may be designated as no-CBs
CPUs using the rcu_nocbs= boot parameter will be no-CBs CPUs.
All other CPUs will invoke their own RCU callbacks in softirq
context.
Select this if CPU 0 needs to be a no-CBs CPU for real-time
or energy-efficiency reasons, but the real reason it exists
is to ensure that randconfig testing covers mixed systems.
config RCU_NOCB_CPU_ALL
bool "All CPUs are build_forced no-CBs CPUs"
depends on RCU_NOCB_CPU
help
This option forces all CPUs to be no-CBs CPUs. The rcu_nocbs=
boot parameter will be ignored. All CPUs' RCU callbacks will
be executed in the context of per-CPU rcuo kthreads created for
this purpose. Assuming that the kthreads whose names start with
"rcuo" are bound to "housekeeping" CPUs, this reduces OS jitter
on the remaining CPUs, but might decrease memory locality during
RCU-callback invocation, thus potentially degrading throughput.
Select this if all CPUs need to be no-CBs CPUs for real-time
or energy-efficiency reasons.
endchoice
endmenu # "RCU Subsystem"
config BUILD_BIN2C
bool
default n
config IKCONFIG
tristate "Kernel .config support"
select BUILD_BIN2C
---help---
This option enables the complete Linux kernel ".config" file
contents to be saved in the kernel. It provides documentation
of which kernel options are used in a running kernel or in an
on-disk kernel. This information can be extracted from the kernel
image file with the script scripts/extract-ikconfig and used as
input to rebuild the current kernel or to build another kernel.
It can also be extracted from a running kernel by reading
/proc/config.gz if enabled (below).
config IKCONFIG_PROC
bool "Enable access to .config through /proc/config.gz"
depends on IKCONFIG && PROC_FS
---help---
This option enables access to the kernel configuration file
through /proc/config.gz.
config LOG_BUF_SHIFT
int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
range 12 21
default 17
depends on PRINTK
help
Select the minimal kernel log buffer size as a power of 2.
The final size is affected by LOG_CPU_MAX_BUF_SHIFT config
parameter, see below. Any higher size also might be forced
by "log_buf_len" boot parameter.
Examples:
17 => 128 KB
16 => 64 KB
15 => 32 KB
14 => 16 KB
13 => 8 KB
12 => 4 KB
config CONSOLE_FLUSH_ON_HOTPLUG
bool "Enable console flush configurable in hot plug code path"
depends on HOTPLUG_CPU
def_bool n
help
In cpu hot plug path console lock acquire and release causes the
console to flush. If console lock is not free hot plug latency
increases. So make console flush configurable in hot plug path
and default disabled to help in cpu hot plug latencies.
config LOG_CPU_MAX_BUF_SHIFT
int "CPU kernel log buffer size contribution (13 => 8 KB, 17 => 128KB)"
depends on SMP
range 0 21
default 12 if !BASE_SMALL
default 0 if BASE_SMALL
depends on PRINTK
help
This option allows to increase the default ring buffer size
according to the number of CPUs. The value defines the contribution
of each CPU as a power of 2. The used space is typically only few
lines however it might be much more when problems are reported,
e.g. backtraces.
The increased size means that a new buffer has to be allocated and
the original static one is unused. It makes sense only on systems
with more CPUs. Therefore this value is used only when the sum of
contributions is greater than the half of the default kernel ring
buffer as defined by LOG_BUF_SHIFT. The default values are set
so that more than 64 CPUs are needed to trigger the allocation.
Also this option is ignored when "log_buf_len" kernel parameter is
used as it forces an exact (power of two) size of the ring buffer.
The number of possible CPUs is used for this computation ignoring
hotplugging making the compuation optimal for the the worst case
scenerio while allowing a simple algorithm to be used from bootup.
Examples shift values and their meaning:
17 => 128 KB for each CPU
16 => 64 KB for each CPU
15 => 32 KB for each CPU
14 => 16 KB for each CPU
13 => 8 KB for each CPU
12 => 4 KB for each CPU
#
# Architectures with an unreliable sched_clock() should select this:
#
config HAVE_UNSTABLE_SCHED_CLOCK
bool
config GENERIC_SCHED_CLOCK
bool
#
# For architectures that want to enable the support for NUMA-affine scheduler
# balancing logic:
#
config ARCH_SUPPORTS_NUMA_BALANCING
bool
#
# For architectures that know their GCC __int128 support is sound
#
config ARCH_SUPPORTS_INT128
bool
# For architectures that (ab)use NUMA to represent different memory regions
# all cpu-local but of different latencies, such as SuperH.
#
config ARCH_WANT_NUMA_VARIABLE_LOCALITY
bool
config NUMA_BALANCING_DEFAULT_ENABLED
bool "Automatically enable NUMA aware memory/task placement"
default y
depends on NUMA_BALANCING
help
If set, automatic NUMA balancing will be enabled if running on a NUMA
machine.
config NUMA_BALANCING
bool "Memory placement aware NUMA scheduler"
depends on ARCH_SUPPORTS_NUMA_BALANCING
depends on !ARCH_WANT_NUMA_VARIABLE_LOCALITY
depends on SMP && NUMA && MIGRATION
help
This option adds support for automatic NUMA aware memory/task placement.
The mechanism is quite primitive and is based on migrating memory when
it has references to the node the task is running on.
This system will be inactive on UMA systems.
menuconfig CGROUPS
boolean "Control Group support"
select KERNFS
help
This option adds support for grouping sets of processes together, for
use with process control subsystems such as Cpusets, CFS, memory
controls or device isolation.
See
- Documentation/scheduler/sched-design-CFS.txt (CFS)
- Documentation/cgroups/ (features for grouping, isolation
and resource control)
Say N if unsure.
if CGROUPS
config CGROUP_DEBUG
bool "Example debug cgroup subsystem"
default n
help
This option enables a simple cgroup subsystem that
exports useful debugging information about the cgroups
framework.
Say N if unsure.
config CGROUP_FREEZER
bool "Freezer cgroup subsystem"
help
Provides a way to freeze and unfreeze all tasks in a
cgroup.
config CGROUP_DEVICE
bool "Device controller for cgroups"
help
Provides a cgroup implementing whitelists for devices which
a process in the cgroup can mknod or open.
config CPUSETS
bool "Cpuset support"
help
This option will let you create and manage CPUSETs which
allow dynamically partitioning a system into sets of CPUs and
Memory Nodes and assigning tasks to run only within those sets.
This is primarily useful on large SMP or NUMA systems.
Say N if unsure.
config PROC_PID_CPUSET
bool "Include legacy /proc/<pid>/cpuset file"
depends on CPUSETS
default y
config CGROUP_CPUACCT
bool "Simple CPU accounting cgroup subsystem"
help
Provides a simple Resource Controller for monitoring the
total CPU consumed by the tasks in a cgroup.
config RESOURCE_COUNTERS
bool "Resource counters"
help